
Ergo: A Resilient Platform For Contractual

Money

Ergo Developers, https://ergoplatform.org

May 14, 2019
v1.0

Abstract

We present Ergo, a new flexible blockchain protocol. Ergo is designed
for developing decentralized applications with the main focus of providing
an efficient, secure and easy way to implement financial contracts.

To achieve this goal, Ergo includes various technical and economic
improvements to existing blockchain solutions. Every coin in Ergo is pro-
tected by a program in ErgoScript, which is a powerful and protocol-
friendly scripting language based on Σ-protocols. Using ErgoScript, we
can encode the conditions under which coins may be used: who can spend
them, when, under what external conditions, to whom, and so on.

Extended support for light nodes makes Ergo friendly for end users
because it allows running contracts on untrusted commodity hardware.
To be usable in the long-term, Ergo follows a survivability approach – it
uses widely-researched solutions that don’t result in security issues in the
future, while also preventing performance degradation over time with a
new economic model. Finally, Ergo has a self-amendable protocol that
allows it to absorb new ideas and improve itself in the future.

1 Introduction

Beginning more than ten years ago with Bitcoin [1], blockchain technology has
so far proved to be a secure way of maintaining a public transaction ledger
and disintermediating trusted third parties such as traditional financial institu-
tions to some degree. Even after achieving a market capitalization over $300bn
in 2017 [2], no severe attacks were performed on the Bitcoin network despite
the high potential yield. This resilience of cryptocurrencies and the financial
empowerment and self-sovereignty they promise to bring is achieved by a com-
bination of modern cryptographic algorithms and decentralized architecture.

However, this resilience comes at a cost and has not yet been proven for
existing systems in the long-run at economy-wide scale. To use a blockchain
without any trust, its participants should check each other by downloading
and processing all the transactions in the network, utilizing network resources.

1

Besides network utilization, transaction processing also utilizes computational
resources, especially if the transactional language is sufficiently flexible. Finally,
blockchain participants have to keep a significant amount of data in their local
storages and the storage requirements are growing fast. Of this, certain data
must be maintained in memory. Thus, transaction processing utilizes various
resources of hundreds of thousands of computers all over the world and consump-
tion of these resources is paid for by regular users in the form of transaction
fees [3]. Despite the generous block reward subsidy in some existing systems,
their fees can still be very high at times [4]. Due to this, even after being
around for more than ten years, blockchain technology is still primarily being
used in financial applications, where the advantage of high security outweighs
the disadvantage of high transaction costs.

Besides the vanilla currency example, the other use of blockchains is to build
decentralized applications. Such applications utilize the ability of the underly-
ing platform to write smart contracts [5] implementing their logic by means of
a blockchain-specific programming language. One way to classify blockchains
in terms of their ability to write smart contracts is based on if they are UTXO-
based (e.g., Bitcoin) or account-based (e.g., Ethereum) [6]. Account-based cryp-
tocurrencies, such as Ethereum, introduce special contract accounts controlled
by code, that may be invoked by incoming transactions. Although this ap-
proach allows performing arbitrary computation, the implementation of com-
plex spending conditions can lead to bugs such as the one in an Ethereum’s
“simple” multi-signature contract that caused a loss of $150 million in 2017 [7].
In UTXO-based cryptocurrencies, every coin has a script associated with it, and
to spend that coin, one must satisfy the conditions given in the script. Imple-
menting such protecting conditions is much easier with the UTXO model but
doing arbitrary Turing-complete computation is quite complex [8]. However,
most financial contracts do not require Turing-completeness [9]. Ergo is based
on the UTXO model and provides a convenient way to implement financial
applications covering an overwhelming majority of public blockchain use-cases.

While the contractual component is important for building decentralized
applications, it is also essential that the blockchain survives in the long-term.
Application-oriented blockchain platforms have existed only for a few years and
the whole area is quite young. Since such platforms have already encountered
problems with performance degradation over time [10, 11], their long-term sur-
vivability is questionable. Even older UTXO-based money-oriented blockchains
have not been proven to be fully resilient in the long-run under changing condi-
tions because we only have about 10 years of blockchain history up to this point.
Solutions for long-term survivability include concepts such as light nodes with
minimal storage requirements [12], storage-rent fee component to prevent bloat-
ing of full-nodes [3], and self-amendable protocols that can adapt to the chang-
ing environment and improve themselves without trusted parties [13]. What is
needed is a combination of various scientific ideas together to fix these prob-
lems, while also providing a way for further improvements without any breaking
changes and this is exactly what Ergo seeks to accomplish.

2

2 Ergo Vision

The Ergo protocol is very flexible and may be changed in the future by the
community. In this section, we define the main principles that should be followed
in Ergo which might be referred to as “Ergo’s Social Contract”. In case of
intentional violation of any of these principles, the resulting protocol should not
be called Ergo.

• Decentralization First. Ergo should be as decentralized as possible: any
parties (social leaders, software developers, hardware manufacturers, min-
ers, funds and so on) whose absence or malicious behavior may affect the
security of the network should be avoided. If any of these parties do appear
during Ergo’s lifetime, the community should consider ways to decrease
their impact level.

• Created for Regular People. Ergo is a platform for ordinary people, and
their interests should not be infringed upon in favor of big parties. In
particular, this means that centralization of mining should be prevented
and regular people should be able to participate in the protocol by running
a full node and mining blocks (albeit with a small probability).

• Platform for Contractual Money. Ergo is the base layer to applications
that will be built on top of it. It is suitable for several applications but
its main focus is to provide an efficient, secure and easy way to implement
financial contracts.

• Long-term Focus. All aspects of Ergo development should be focused on
a long term perspective. At any point of time, Ergo should be able to
survive for centuries without expected hard forks, software or hardware
improvements or some other unpredictable changes. Since Ergo is designed
as a platform, applications built on top of Ergo should also be able to
survive in the long term. This resiliency and long term survivability may
also enable Ergo to be a good store of value.

• Permissionless and Open. Ergo protocol does not restrict or limit any cat-
egories of usage. It should allow anyone to join the network and participate
in the protocol without any preliminary actions. Unlike the traditional fi-
nancial system, no bailouts, blacklists or other forms of discrimination
should be possible on the core level of Ergo protocol. On the other hand
application developers are free to implement any logic they want, taking
responsibility for the ethics and legality of their application.

3 Autolykos Consensus Protocol

The core component of any blockchain system is its consensus protocol and Ergo
utilizes a self-developed unique Proof of Work (PoW) consensus protocol called
Autolykos, which is described below. Despite extensive research on possible

3

alternatives, the original PoW protocol with the longest chain rule is still in
demand due to its simplicity, high-security guarantees, and friendliness to light
clients. However, a decade of extensive testing has revealed several problems
with the original one-CPU-one-vote idea.

The first known problem of a PoW system is the development of specialized
hardware (ASICs), which allows a small group of ASIC-equipped miners to
solve PoW puzzles orders of magnitude faster and more efficiently than everyone
else. This problem can be solved with the help of memory-hard PoW schemes
that reduce the disparity between ASICs and commodity hardware. The most
promising approach here is to use asymmetric memory-hard PoW schemes that
require significantly less memory to verify a solution than to find it [14, 15].

The second known threat to a PoW network decentralization is that even big
miners tend to unite in mining pools, leading to a situation when just a few pool
operators (5 in Bitcoin, 2 in Ethereum at the time of writing) control more than
51% of computational power. Although the problem has already been discussed
in the community, no practical solutions have been implemented before Ergo.

Ergo’s PoW protocol, Autolykos [16], is the first consensus protocol that is
both memory-hard and pool-resistant. Autolykos is based on the one list k-sum
problem: a miner has to find k = 32 elements from a pre-defined list R of size
N = 226 (which has a size of 2 Gb), such that

∑
j∈J rj − sk = d is in the

interval {−b, . . . , 0, . . . , b mod q}. Elements of list R are obtained as a result
of one-way computation from index i, two miner public keys pk, w and hash of
block header m as ri = H(i||M ||pk||m||w), where H is a hash function which
returns the values in Z/qZ and M is a static big message that is used to make
hash calculation slower. Also, a set of element indexes J is to be obtained by
one-way pseudo-random function genIndexes, that prevents possible solutions
search optimizations.

Thus, we assume that the only option for a miner is to use the simple brute-
force method given in Algorithm 1 to create a valid block.

Algorithm 1 Block mining

1: Input: upcoming block header hash m, key pair pk = gsk

2: Generate randomly a new key pair w = gx

3: Calculate ri∈[0,N) = H(i||M ||pk||m||w)
4: while true do
5: nonce ← rand
6: J := genIndexes(m||nonce)
7: d :=

∑
j∈J rj · x− sk mod q

8: if d < b then
9: return (m, pk,w, nonce, d)

10: end if
11: end while

Note that although the mining process utilizes private keys, the solution
itself only contains public keys. Solution verification is done by Algorithm 2.

4

Algorithm 2 Solution verification

1: Input: m, pk,w, nonce, d
2: require d < b
3: require pk, w ∈ G and pk, w ̸= e
4: J := genIndexes(m||nonce)
5: f :=

∑
j∈J H(j||M ||pk||m||w)

6: require wf = gd · pk

This approach prevents mining pool formation because the secret key sk is
needed for mining: once any pool miner finds a correct solution, he can use
this secret to steal the block reward. On the other hand, it is secure to reveal a
single solution, as it only contains public keys and reveals a single linear relation
between the 2 secrets sk, w.

Memory-hardness follows from the fact that Algorithm 1 requires keeping
the whole list R for the main loop execution. Every list element takes 32 bytes,
so the whole list of N elements takes N · 32 = 2Gb of memory for N = 226.
A miner can try to reduce memory requirements by calculating these elements
“on the fly” without keeping them in memory, however, he’ll need to calculate
the same hash H multiple times (about 104 times for modern GPUs), thereby
reducing efficiency and profit.

Calculating the list R is also quite a heavy computational task: our initial
implementation [17] consumes 25 seconds on Nvidia GTX 1070 to fill all the
226 elements of the list. This part, however, may be optimized if a miner also
stores a list of unfinalized hashes ui∈[0,N) = H(i||M ||pk) in memory, consuming
5 more Gigabytes of it. In such a case, work to calculate unfinalized hashes
should be done only once during mining initialization while finalizing them and
filling the list R for the new header only consumes a few milliseconds (about 50
ms on Nvidia GTX 1070).

The target parameter b is built-in into the puzzle itself and is adjusted to
the current network hash rate via a difficulty adjustment algorithm [18] to keep
time interval between block close to 2 minutes. This algorithm tries to predict
the hash rate of an upcoming 1024 blocks long epoch based on data from the
previous 8 epochs via the well-known linear least squares method. This makes
the predictions better than that of the usual difficulty adjustment algorithm
and also makes “coin-hopping” attacks less profitable.

4 Ergo State

To check a new transaction, a cryptocurrency client does not use the ledger with
all the transactions that happened before this one. Instead, it uses a ledger state
snapshot from its history. In the Bitcoin Core reference implementation, this
snapshot is the active one-time coins (i.e., UTXOs), and a transaction destroys
some coins and also creates new ones. In Ethereum, this snapshot is of long-
lived accounts and a transaction modifies monetary balance and internal storage

5

of some accounts. Also, in Ethereum (unlike Bitcoin), the representation of the
snapshot is fixed within the protocol because an authenticating digest of the
snapshot is written into the block header.

Ergo follows Bitcoin’s UTXO design and represents the snapshots using one-
time coins. The difference from Bitcoin is that in addition to monetary value
and protecting script, an Ergo one-time coin, called a box, also contains user-
defined data. Similar to Ethereum, an Ergo block also stores an authenticating
digest, called the stateRoot, of the global state after applying the block.

An Ergo box is made of registers (and nothing but registers). Such a box
can have 10 registers labeled R0, R1, . . . , R9, of which the first four are filled
with mandatory values and the rest may contain arbitrary data or be empty.

• R0 (monetary value). Amount of Erg locked in this box.

• R1 (guard script). Serialized script protecting this box.

• R2 (tokens). A box can carry multiple tokens. This register contains an
array of (token identifier → amount) pairs locked in this box.

• R3 (transaction info). Contains (1) declared creation height (should be
no more than actual height of a block which contains the transaction), (2)
a unique identifier of the transaction that created this box, and (3) the
index of this box in that transaction’s output boxes.

• R4 −R9 (additional data). Contains arbitrary user-defined data.

One-time immutable objects (as in Bitcoin’s UTXO model) have some ad-
vantages over Ethereum’s long-lived mutable accounts. Firstly, it gives easier
and safer protection from replay or reordering attacks. Secondly, it is easier to
process transactions in parallel because they don’t modify state of the objects
they access. Also, a transaction either modifies the system state exactly as in-
tended, or does not change it at all (with no possible side-effects resulting from
‘out-of-gas’ exceptions, reentrancy issues, and so on). Finally, it seems easier to
build fully stateless clients using one-time coins [19] (although research in this
area is still in the initial stage).

One major criticism of one-time coins is that this model does not seem
suitable for non-trivial decentralized applications. However, Ergo has overcome
the problems and shown this assertion to be false by demonstrating many non-
trivial prototype applications built on top of it (see Section 7).

The Ergo protocol fixes the ledger snapshot representation in the form of
boxes not destroyed by previous transactions. In detail, a miner should maintain
a Merkle-tree like authenticated data structure built on top of the UTXO set and
must include a short digest (just 33 bytes) of this structure in each block header.
This digest must be calculated after applying the block. This authenticated data
structure is built on top of an AVL+ tree [12], which like a regular hash tree,
allows generating proofs of existence or non-existence of particular elements in
the tree. Thus, users maintaining the full tree are capable of generating proofs
that their boxes are unspent and a small 33 bytes digest is sufficient for verifying

6

these proofs. However, unlike regular hash trees, an AVL+ tree also allows
generation of proofs of tree modifications that allow verifiers to compute the new
tree digest. Ergo miners are required to generate proofs of block modifications
and a hash of this proof is included into the block header along with the digest
of the resulting state. Hence, light nodes that only maintain a small digest of
the current state are able to verify a full block – they can check that all spent
boxes were removed from the state, all created boxes were added to it and no
more changes were made.

AVL+ trees allow building efficient authenticated dictionaries that reduce
the proof size and speed up verification by 1.4-2.5 times in comparison to prior
solutions, making them better suited for the cryptocurrency applications. For
instance, our proofs are about 3 times smaller than proofs of a Merkle Patricia
trie used in Ethereum for the same purpose (see Figure 1).

Figure 1: Proof size comparison with a Merkle patricia trie

Finally, proofs for multiple transactions in a single block are compressed
together, reducing their total length by approximately an additional factor of 2:

7

Figure 2: Left: proof size per modification for 2000 transactions as a func-
tion of starting tree size n. Right: proof size per modification for a tree with
n = 1000000 keys as a function of batch size B. In both cases, half of the mod-
ifications were inserts of new (key, value) pairs and the other half were change
of values for existing keys.

Thus, Ergo state provides an efficient and secure way to prove existence
or non-existence of certain elements in it, as well as proofs of tree modifica-
tions. These tree operations are supported by the Ergo smart contract lan-
guage, thereby providing the ability to implement sophisticated contracts like
those discussed in Section 7.

5 Resiliency and Survivability

Being a platform for contractual money, Ergo should also support long-term
contracts for a period of at least an average person’s lifetime. However, even
young existing smart contract platforms are experiencing issues with perfor-
mance degradation and adaptability to external conditions. This leads to a
situation where the cryptocurrency depends on a small group of developers to
provide a fixing hard-fork, or the cryptocurrency won’t survive. For example,
the Ethereum network was started with a Proof-of-Work consensus algorithm
with a plan to switch to Proof-of-Stake in the near future. However, delays in
the Proof-of-Stake development have led to several fixing hard-forks [20] and
the community is still forced to rely on core developers promising to implement
the next hard-fork.

The first common survivability issue is that in pursuit of popularity, develop-
ers tend to implement ad-hoc solutions without proper preliminary research and
testing. Such solutions inevitably lead to bugs, which then lead to hasty bug
fixes, then to fixes of those bug fixes, and so on, making the network unreliable
and even less secure. A notable example is the IOTA cryptocurrency, which im-
plemented various scaling solutions, including its own hash function and DAG
structure, that allowed it to achieve high popularity and market capitalization.
However, a detailed analysis of these solutions revealed multiple serious prob-

8

lems, including practical attacks that enabled token theft [21, 22]. A subsequent
hard-fork [23] then fixed these problems by switching to the well-known SHA3
hash function, thereby confirming the uselessness of such kind of innovations.
Ergo’s approach here is to use stable well-tested solutions, even if they lead to
slower short-term innovations. Most of the solutions used in Ergo are formalized
in papers presented at peer-reviewed conferences [12, 18, 3, 8, 24, 25] and have
been widely discussed in the community.

A second problem that decentralization (and thus survivability) faces is the
lack of secure trustless light clients. Ergo tries to fix this problem of blockchain
technology without creating new ones. Since Ergo is a PoW blockchain, it
easily allows extraction of a small header from the block content. This header
alone permits validation of the work done in the block and a headers-only chain
is enough for best chain selection and synchronization with the network. A
headers-only chain, although much smaller than the full blockchain, still grows
linearly with time. Recent research on light clients provides a way for light
clients to synchronize with the network by downloading an even smaller amount
of data, thereby unlocking the ability to join the network using untrusted low-
end hardware such as mobile phones [26, 27]. Ergo uses an authenticated state 4
and for transactions included in a block, a client may download a proof of
their correctness. Thus, regardless of the blockchain size, a regular user with a
mobile phone can join the network and start using Ergo with the same security
guarantees as a full node.

Readers may notice a third potential problem in that although support for
light clients solves the problem for Ergo users, it does not solve the problem
for Ergo miners, who still need to keep the whole state for efficient transaction
validation. In existing blockchain systems, users can put arbitrary data into this
state. This data, which lasts forever, creates a lot of dust and its size increases
endlessly over time [28]. A large state size leads to serious security issues because
when the state does not fit in random-access memory, an adversary can generate
transactions whose validation become very slow due to required random access
to the miner’s storage. This can lead to DoS attacks such as the one on Ethereum
in 2016 [29]. Moreover, the community’s fear of such attacks along with the
problem of “state bloat” without any sort of compensation to miners or users
holding the state may have prevented scaling solutions that otherwise could
have been implemented (such as larger block sizes, for example). To prevent
this, Ergo has a storage rent component: if an output remains in the state for
4 years without being consumed, a miner may charge a small fee for every byte
kept in the state.

This idea, which is similar to regular cloud storage services, was only pro-
posed quite recently for cryptocurrencies [30] and has several important con-
sequences. Firstly, it ensures that Ergo mining will always be stable, unlike
Bitcoin and other PoW currencies, where mining may become unstable after
emission is done [31]. Secondly, growth of the state’s size becomes controllable
and predictable, thereby helping Ergo miners to manage their hardware re-
quirements. Thirdly, by collecting storage fees from outdated boxes, miners can
return coins to circulation, and thus, prevent the steady decrease of circulating

9

supply due to lost keys [32]. All these effects should support Ergo’s long-term
survivability, both technically and economically.

A fourth vital challenge to survivability is that of changes in the external
environment and demands placed on the protocol. A protocol should adapt
to the ever changing hardware infrastructure, new ideas to improve security or
scalability that emerge over time, the evolution of use-cases, and so on. If all the
rules are fixed without any ability to change them in a decentralized manner,
even a simple constant change can lead to heated debates and community splits.
For instance, discussion of the block-size limit in Bitcoin led to its splitting into
several independent coins. In contrast, Ergo protocol is self-amendable and is
able to adapt to the changing environment. In Ergo, parameters like block size
can be changed on-the-fly via voting of miners. At the beginning of each 1024-
block voting epoch, a miner proposes changes of up to 2 parameters (such as
an increase of block size and a decrease of storage fee factor). During the rest
of the epoch, miners vote to approve or reject the changes. If a majority of
votes within the epoch support the change, the new values are written into the
extension section of the first block of the next epoch, and the network starts
using the updated values for block mining and validation.

To absorb more fundamental changes, Ergo follows the approach of soft-
forkability that allows changing the protocol significantly while keeping old nodes
operational. At the beginning of an epoch, a miner can also propose to vote
for a more fundamental change (e.g., adding a new instruction to ErgoScript)
describing affected validation rules. Voting for such breaking changes continues
for 32,768 blocks and requires at least 90% of “Yes” votes to be accepted. Once
being accepted, a 32,768-blocks long activation period starts to give outdated
nodes time to update their software version. If a node software is still not up-
dated after the activation period, then it skips the specified checks but continues
to validate all the known rules. List of previous soft-fork changes is recorded into
the extension to allow light nodes of any software version to join the network
and catch up to the current validation rules. A combination of soft-forkability
with the voting protocol allows changing of almost all the parameters of the
network except the PoW rules that are responsible for the voting itself.

6 Ergo’s Native Token

Ergo platform has its native token, which is called Erg and is divisible to up to
109 smallest units, nanoErgs (a nanoErg is one billionth of an Erg). Ergs are
important for Ergo platform stability and security by several reasons discussed
below.

During the initial phase of Ergo’s life, miners will receive the reward in
Ergs according to a predefined and hard-coded token emission schedule (see 6.1
for more details). These coins will incentivize miners to participate in the Ergo
network, securing it from hashrate-based attacks like the known 51% attack [33].

Erg emission will be finished within just eight years, and after that miners
will only receive Ergs from fees. Although, adjustable over time through miner

10

on-chain voting, Ergo block size and maximum block computational cost at any
given point in time will be limited, and thus miners are enforced to choose only
a subset of transactions from mempool during times of high load. Fees will help
miners to sort the transactions, preventing spam attacks while allowing miners
to include transactions from honest users in blocks.

Besides network and computation resources, a transaction utilizes storage
by increasing state size. In existing cryptocurrencies, an element of the state,
being a UTXO in UTXO-based blockchains, called a box in Ergo, once created
lives possibly forever without any compensation to miners and some users who
must keep this state in high-cost random-access memory. This leads to a mis-
alignment of incentives and continuously increasing state size. In contrast, Ergo
has a storage rent component that periodically charges users Erg for every byte
included in the state. This storage rent is making the system more stable by
limiting state size or insuring proper compensation for larger state size, return-
ing lost coins into circulation and providing an additional stable and predictable
reward to miners.

Thus, being a platform for contractual money, Ergo is suitable to build
applications and monetary systems on top of it. However, participating in such
systems would require using the Ergo native token, Erg, as well in order to
pay storage rent and transaction fees which will provide miners strong ongoing
incentives to secure the network with adequate hash power. Users, for their
part, will be highly incentivized to purchase, use and save Ergs if they find
applications for Ergo to be of high value.

6.1 Emission

All Erg tokens that will ever circulate in the system are presented in the initial
state, which consists of 3 boxes:

• No Premine Proof. This box contains exactly one Erg and is protected by
a script that prevents it from being spent by anyone. Thus, it is a long-
lived box that will stay in the system until the storage-rent component
destroys it. Its main purpose is to prove that Ergo mining was not started
privately by anyone before the declared launch date. To achieve this,
additional registers of this box contain the latest headlines from the media
(The Guardian, Vedomosti, Xinhua), as well as the latest block identifiers
from Bitcoin and Ethereum. Thus, Ergo mining could not have started
before certain events in the real world and the cryptocurrency space.

• Treasury. This box contains 4,330,791.5 Ergs that will be used to fund
Ergo development. Its protecting script [34] consists of two parts.

First, it ensures that only a predefined portion of the box value is unlocked.
During blocks 1-525,599 (2 years) 7.5 Ergs will be released every block.
Then during blocks 525,600-590,399 (3 months) 4.5 Ergs will be released
every block. Finally, during blocks 590,400-655,199 (3 months) 1.5 Ergs
will be released every block. This rule ensures the presence of funds for

11

Ergo development for 2.5 years and, at any moment of time, rewards do
not exceed 10% of the total number of coins in circulation.

Second, it has custom protection from unexpected spending. Initially,
it requires the spending transaction to be signed by at least 2 of 3 secret
keys that are under control of the initial team members. When they spend
the box, they are free to change this part of the script as they wish, for
example by adding new members to protect foundation funds.

During the first year, these funds will be used to cover the pre-issued
EFYT token. After that, they will be distributed in a decentralized man-
ner via a community voting system that is under development.

• Miners Reward. This box contains 93,409,132 Ergs that will be collected
by block miners as a reward for their work. Its protecting script [35]
requires the spending transaction to have exactly two outputs with the
following properties:

– The first output should be protected by the same script and the
number of Ergs in it should equal to the remaining miners’ reward.
During blocks 1 - 655,199, a miner will be able to collect 67.5 Ergs
from this box. During blocks 655,200 - 719,999 (3 months), a miner
will be able to collect 66 Ergs, and after that, the block reward will
be reduced by 3 Ergs every 64,800 blocks (3 months) until it reaches
zero at block 2,080,800.

– The second output should contain the remaining coins and should be
protected by the following condition: it can be spent by a miner that
solved the block’s PoW puzzle and not earlier than 720 blocks after
the current block.

All of these rules result in the following curve denoting the number of coins
in circulation with time:

12

Figure 3: Ergo emission curve

7 Contractual Money

In our opinion, the overwhelming majority of use-cases for public blockchains
(even those that claim to provide a general-purpose decentralized world com-
puter) are for financial applications, which do not require Turing-completeness.
For instance, if an oracle writes down non-financial data into the blockchain (such
as temperature), this data is usually used further in a financial contract. An-
other trivial observation we make is that many applications use digital tokens
with mechanics different from the native token.

For an application developer, the Ergo Platform offers custom tokens (which
are first-class citizens) and a domain-specific language for writing box protecting
conditions in order to implement flexible and secure financial applications. Ergo
applications are defined in terms of protecting scripts built into boxes, which
may also contain data involved in the execution. We use the term contractual
money to define Ergs (and secondary tokens) whose usage is bounded by a
contract. This applies to all tokens on the platform in existence because any
box with its contents (Ergs, tokens, data) is bounded by a contract.

However, we can distinguish between two types of contractual Ergs. The
first, called free Ergs, are the ones that could change their contracts easily and

13

have no restrictions on the outputs or the other inputs of a spending transac-
tion. The second type is bounded Ergs, whose contracts require the spending
transaction to have input and output boxes with specific properties.

For example, if a box A is protected by just a public key (so providing a sig-
nature against a spending transaction is enough in order to destroy the box), the
public key owner can spend A and transfer the Ergs to any arbitrary output box.
Thus, the Ergs within A are free. In contrast, imagine a box B protected by a
combination of a public key and a condition that demands the spending trans-
action to create an output box with the same amount of Ergs as in B and whose
guarding script has the hash rBMUEMuPQUx3GzgFZSsHmLMBouLabNZ4HcERm4N (in
Base58 encoding). In this case, the Ergs in B are bounded Ergs.

Similarly, we can define free and bounded tokens. An Ergo contract can have
several hybrids such as bounded Ergs and free tokens or both bounded under
one public key and free under another.

7.1 Preliminaries For Ergo Contracts

While in Bitcoin, a transaction output is protected by a program in a stack-
based language named Script, in Ergo a box is protected by a logic formula which
combines predicates over a context with cryptographic statements provable via
zero-knowledge protocols using AND, OR, and k-out-of-n connectives. The
formula is represented as a typed direct acyclic graph, whose serialized form is
written in a box. To destroy a box, a spending transaction needs to provide
arguments (which include zero-knowledge proofs) satisfying the formula.

However, in most cases, a developer is unlikely to develop contracts in terms
of graphs. Instead, he would like to use a high-level language such as ErgoScript,
which we provide with the reference client.

Writing scripts in ErgoScript is easy. As an example, for a one-out-of-two
signature, the protecting script would be pk1∥pk2, which means “prove knowl-
edge of a secret key corresponding to the public key pk1 or knowledge of a secret
key corresponding to public key pk2”. We have two separate documents for help
in developing contracts with ErgoScript: the “ErgoScript Tutorial” [36] and the
“Advanced ErgoScript Tutorial” [37]. Thus, we do not get into the details of de-
veloping contracts with ErgoScript. Rather, we provide a couple of motivating
examples in the following sections.

Two more features of Ergo shaping contracting possibilities are:

• Data Inputs: To be used in a transaction, a box need not be destroyed
but can instead be read-only. In the latter case, we refer to the box as
being part of the data input of the transaction. Thus, a transaction gets
two box sets as its arguments, the inputs and data inputs, and produces
one box set named outputs. Data inputs are useful for oracle applications
and interacting contracts.

• Custom Tokens: A transaction can carry many tokens as long as the esti-
mated complexity for processing them does not exceed a limit, a parameter

14

that is set by miner voting. A transaction can also issue a single token with
a unique identifier which is equal to the identifier of a first (spendable)
input box of the transaction. The identifier is unique assuming the colli-
sion resistance of an underlying hash function. The amount of the tokens
issued could be any number within the range [1, 9223372036854775807].
The weak preservation rule is followed for tokens, which requires that the
total amount of any token in a transaction’s outputs should be no more
than the total amount of that token in the transaction’s inputs (i.e., some
amount of token could be burnt). In contrast, the strong reservation rule
is followed for Ergs, which requires that the total amount of Ergs in the
inputs and outputs must be the same.

7.2 Contract Examples

In this section, we provide some examples which demonstrate the superiority of
Ergo contracts compared to Bitcoin’s. The examples include betting on oracle-
provided data, non-interactive mixing, atomic swaps, complementary currency,
and an initial coin offering implemented on top of the Ergo blockchain.

7.2.1 An Oracle Example

Equipped with custom tokens and data inputs, we can develop a simple oracle
example which also shows some design patterns that we discovered while playing
with Ergo contracts. Assume that Alice and Bob want to bet on tomorrow’s
weather by putting money into a box that becomes spendable by Alice if tomor-
row’s temperature is more than 15 degrees, and spendable by Bob otherwise.
To deliver the temperature into the blockchain, a trusted oracle is needed.

In contrast to Ethereum with its long-lived accounts, where a trusted oracle’s
identifier is usually known in advance, delivering data with one-time boxes is
more tricky. For starters, a box protected by the oracle’s key cannot be trusted,
as anyone can create such a box. It is possible to include signed data into a box
and check the oracle’s signature in the contract (we have such an example), but
this is quite involved. Instead, a solution with custom tokens is very simple.

Firstly, a token identifying the oracle should be issued. In the simplest case,
the amount of this token could be one. We call such a token a singleton token.
The oracle creates a box containing this token along with its data (i.e., the
temperature) in register R4 and the UNIX epoch time in register R5. In order
to update the temperature, the oracle destroys this box and creates a new one
with the updated temperature.

Assume that Alice and Bob know the oracle’s token identifier in advance.
With this knowledge, they can jointly create a box with a contract that requires
first (read-only) data input to contain the oracle’s token. The contract extracts
the temperature and time from the data input and decides who gets the payout.
The code is as simple as following:

15

Algorithm 3 Oracle Contract Example

1: val dataInput = CONTEXT.dataInputs(0)
2: val inReg = dataInput.R4[Long].get
3: val inTime = dataInput.R5[Long].get
4: val inToken = dataInput.tokens(0). 1 == tokenId
5: val okContractLogic = (inTime > 1556089223) &&
6: ((inReg > 15L && pkA) || (inReg ≤ 15L && pkB))
7: inToken && okContractLogic

This contract shows how a singleton token could be used for authentication.
As a possible alternative, the oracle can put the time and temperature into
a box along with a signature on this data. However, this requires signature
verification, which is more complex and expensive compared to the singleton
token approach. Also, the contract shows how read-only data inputs could be
useful for contracts which need to access data stored in some other box in the
state. Without data inputs, an oracle must issue one spendable box for each
pair of Alice and Bob. With data inputs, the oracle issues only a single box.

7.2.2 A Mixing Example

Privacy is important for a digital currency but implementing it can be costly
or require a trusted setup. Thus, it is desirable to find a cheaper way for coin
mixing. As a first step towards that, we offer a non-interactive mixing protocol
between two users Alice and Bob that works as follows:

1. Alice creates a box which demands the spending transaction to satisfy
certain conditions. After that, Alice only listens to the blockchain; no
interaction with Bob is needed.

2. Bob creates a transaction spending Alice’s box along with one of his own
to generate two outputs having identical scripts but different data. Each
of Alice and Bob may spend only one of the two outputs but an observer
decide which output belongs to whom because they look indistinguishable.

For simplicity, we do not consider fee in the example. The idea of mixing is
similar to non-interactive Diffie-Hellman key exchange. First, Alice generates
a secret value x (a huge number) and publishes the corresponding public value
gX = gx. She requires Bob to generate a secret number y, and to include
into each output two values c1, c2, where one value is equal to gy and the
other is equal to gxy. Bob uses a random coin to choose meanings for {c1, c2}.
Without access to the secrets, an external observer cannot guess with probability
better than 1

2 whether c1 is equal to gy or to gxy. This is assuming that the
cryptographic primitive we use has a certain property, that the Decision Diffie-
Hellman (DDH) problem is hard. To destroy an output box, a proof should
be given that either y is known such that c2 = gy, or x is known such that
c2 = cx1 . The contract of Alice’s box checks that c1 and c2 are well-formed. The
code snippets for Alice’s coin and the mixing transaction’s output are provided

16

in Algorithms 4 and 5 respectively. Since ErgoScript currently doesn’t have
support for proving knowledge of some x such that c2 = c1

x for arbitrary c1,
we will prove a slightly longer statement that is supported, namely, proving
knowledge of x such that gX = gx and c2 = c1

x. This is called proveDHTuple.

Algorithm 4 Alice’s Input Script

1: val c1 = OUTPUTS(0).R4[GroupElement].get
2: val c2 = OUTPUTS(0).R5[GroupElement].get
3:

4: OUTPUTS.size == 2 &&
5: OUTPUTS(0).value == SELF.value &&
6: OUTPUTS(1).value == SELF.value &&
7: blake2b256(OUTPUTS(0).propositionBytes) == fullMixScriptHash &&
8: blake2b256(OUTPUTS(1).propositionBytes) == fullMixScriptHash &&
9: OUTPUTS(1).R4[GroupElement].get == c2 &&

10: OUTPUTS(1).R5[GroupElement].get == c1 && {
11: proveDHTuple(g, gX, c1, c2) ||
12: proveDHTuple(g, gX, c2, c1)
13: }

Algorithm 5 Mixing Transaction Output Script

1: val c1 = SELF.R4[GroupElement].get
2: val c2 = SELF.R5[GroupElement].get
3: proveDlog(c2) || // either c2 is gy

4: proveDHTuple(g, c1, gX, c2) // or c2 is uy = gxy

We refer the reader to [37] for a proof of indistinguishability of the outputs
and details on why Alice and Bob can spend only their respective coins.

7.2.3 More Examples

In this section, we briefly shed light on a few more examples along with links to
the documents providing the details and code.

Atomic Swap Cross-chain atomic swap between Ergo and any blockchain
that supports payment to either SHA-256 or Blake2b-256 hash preimages and
time-locks can be done in a similar way to that proposed for Bitcoin [38]. An
Ergo alternative implementation is provided in [36]. As Ergo also has custom
tokens, atomic exchange on the single Ergo blockchain (Erg-to-token or token-
to-token) is also possible. An implementation for this can also be found in [36].

Crowdfunding We consider the simplest crowdfunding scenario. In this ex-
ample, a crowdfunding project with a known public key is considered successful

17

if it can collect unspent outputs with a total value not less than a certain amount
before a certain height. A project backer creates an output box protected by the
following statement: the box can be spent if the spending transaction has the
first output box protected by the project’s key and amount no less than the tar-
get amount. Then the project can collect (in a single transaction) the biggest
backer output boxes with a total value not less than the target amount (it
is possible to collect up to 22,000 outputs, which is enough even for a big
crowdfunding campaign). For the remaining outputs, it is possible to construct
follow-up transactions. The code can be found in [36].

The Local Exchange Trading System Here we briefly demonstrate a Local
Exchange Trading System (LETS) in Ergo. In such a system, a member of a
community may issue community currency via personal debt. For example, if
Alice with zero balance is buying something for 5 community tokens from Bob,
whose balance is zero as well, her balance after the trade would be −5 tokens,
and Bob’s balance would be 5 tokens. Then Bob can buy something using his
5 tokens, for example, from Carol. Usually, in such systems, there is a limit on
negative balances (to avoid free-riding).

Since a digital community is vulnerable to Sybil attacks [39], some mech-
anism is needed to prevent such attacks where Sybil nodes create debts. The
simplest solution is to use a committee of trusted managers that approve new
members of the community. A trust-less but more complex solution is to use
security deposits made in Ergs. For simplicity, we consider the approach with
the committee here.

This example contains two interacting contracts. A management contract
maintains a list of community members, and a new member can be added if
some management condition is satisfied (for example, a threshold signature is
provided). A new member is associated with a box containing a token that iden-
tifies the member. This box, which contains the member contract, is protected
by a special exchange script that requires the spending transaction to do a fair
exchange. We skip the corresponding code, which can be found in a separate
article [40].

What this contract shows, in contrast to the previous example, is that instead
of storing the members list, only a short digest of an authenticated AVL+ tree
can be included in the box. This allows a reduction in storage requirements
for the state. A transaction doing lookup or modification of the member list
should provide a proof for AVL+ tree lookup or modification operations. Thus,
saving space in the state storage leads to bigger transactions, but this scalability
problem is easier to solve.

Initial Coin Offering We discuss an Initial Coin Offering (ICO) example
that shows how multi-stage contracts can be created in Ergo. Like most ICOs,
our example has three stages. In the first stage, the project raises money in
Ergs. In the second stage, the project issues a new token, whose amount equals
the number of nanoErgs raised in the first stage. In the third stage, the investors

18

can withdraw issued tokens.
Note that the first and third stages have many transactions on the blockchain,

while a single transaction is enough for the second stage. Similar to the previ-
ous example, the ICO contract uses an AVL+ tree to store the list of (investor,
amount) pairs. The complete code is available at [41].

More Examples We have even more examples of Ergo applications in [36, 37].
These examples include time-controlled emission, cold wallets contracts, rock-
paper-scissors game, and many others.

References

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

[2] Bitcoin’s price surpasses $18,000 level, market cap now higher
than visa’s. [Online]. Available: https://cointelegraph.com/news/
bitcoins-price-surpasses-18000-level-market-cap-now-higher-than-visas

[3] A. Chepurnoy, V. Kharin, and D. Meshkov, “A systematic approach to
cryptocurrency fees,” IACR Cryptology ePrint Archive, vol. 2018, p. 78,
2018.

[4] Skyrocketing fees are fundamentally changing bitcoin. [Online]. Available:
https://arstechnica.com/tech-policy/2017/12/bitcoin-fees-rising-high/

[5] N. Szabo, “Smart contracts,” Unpublished manuscript, 1994.

[6] J. Zahnentferner, “Chimeric ledgers: Translating and unifying utxo-based
and account-based cryptocurrencies.” IACR Cryptology ePrint Archive,
vol. 2018, p. 262, 2018.

[7] I accidentally killed it: Parity wallet bug locks $150
million in ether. [Online]. Available: https://www.ccn.com/
i-accidentally-killed-it-parity-wallet-bug-locks-150-million-in-ether

[8] A. Chepurnoy, V. Kharin, and D. Meshkov, “Self-reproducing coins as uni-
versal turing machine,” in Data Privacy Management, Cryptocurrencies
and Blockchain Technology. Springer, 2018, pp. 57–64.

[9] M. Jansen, F. Hdhili, R. Gouiaa, and Z. Qasem, “Do smart
contract languages need to be turing complete?” 2019. [On-
line]. Available: https://www.researchgate.net/publication/332072371
Do Smart Contract Languages Need to be Turing Complete/download

[10] Very slow syncing on hard drive. [Online]. Available: https://github.com/
ethereum/go-ethereum/issues/14895

19

https://cointelegraph.com/news/bitcoins-price-surpasses-18000-level-market-cap-now-higher-than-visas
https://cointelegraph.com/news/bitcoins-price-surpasses-18000-level-market-cap-now-higher-than-visas
https://arstechnica.com/tech-policy/2017/12/bitcoin-fees-rising-high/
https://www.ccn.com/i-accidentally-killed-it-parity-wallet-bug-locks-150-million-in-ether
https://www.ccn.com/i-accidentally-killed-it-parity-wallet-bug-locks-150-million-in-ether
https://www.researchgate.net/publication/332072371_Do_Smart_Contract_Languages_Need_to_be_Turing_Complete/download
https://www.researchgate.net/publication/332072371_Do_Smart_Contract_Languages_Need_to_be_Turing_Complete/download
https://github.com/ethereum/go-ethereum/issues/14895
https://github.com/ethereum/go-ethereum/issues/14895

[11] Why is my node synchronization stuck/extremely slow at block 2,306,843?
[Online]. Available: https://ethereum.stackexchange.com/questions/9883/
why-is-my-node-synchronization-stuck-extremely-slow-at-block-2-306-843

[12] L. Reyzin, D. Meshkov, A. Chepurnoy, and S. Ivanov, “Improving au-
thenticated dynamic dictionaries, with applications to cryptocurrencies,”
in International Conference on Financial Cryptography and Data Security.
Springer, 2017, pp. 376–392.

[13] L. Goodman, “Tezos — a self-amending crypto-ledger white paper,” URL:
https://www. tezos. com/static/papers/white paper. pdf, 2014.

[14] A. Biryukov and D. Khovratovich, “Equihash: Asymmetric proof-of-work
based on the generalized birthday problem,” Ledger, vol. 2, pp. 1–30, 2017.

[15] Ethash. [Online]. Available: https://github.com/ethereum/wiki/wiki/
Ethash/6e97c9cea49605264c6f4d1dc9e1939b1f89a5a3

[16] A. Chepurnoy, V. Kharin, and D. Meshkov, “Autolykos: The ergo platform
pow puzzle,” 2019. [Online]. Available: https://docs.ergoplatform.com/
ErgoPow.pdf

[17] Autolykos gpu miner. [Online]. Available: https://github.com/
ergoplatform/Autolykos-GPU-miner

[18] D. Meshkov, A. Chepurnoy, and M. Jansen, “Short paper: Revisiting diffi-
culty control for blockchain systems,” in Data Privacy Management, Cryp-
tocurrencies and Blockchain Technology. Springer, 2017, pp. 429–436.

[19] A. Chepurnoy, C. Papamanthou, and Y. Zhang, “Edrax: A cryptocurrency
with stateless transaction validation,” Cryptology ePrint Archive, Report
2018/968, Tech. Rep., 2018.

[20] Ethereum’s blockchain is once again feeling the ‘difficulty
bomb’ effect. [Online]. Available: https://www.coindesk.com/
ethereum-blockchain-feeling-the-difficulty-bomb-effect

[21] E. Heilman, N. Narula, G. Tanzer, J. Lovejoy, M. Colavita, M. Virza, and
T. Dryja, “Cryptanalysis of curl-p and other attacks on the iota cryptocur-
rency.”

[22] G. De Roode, I. Ullah, and P. J. Havinga, “How to break iota heart by
replaying?” in 2018 IEEE Globecom Workshops (GC Wkshps). IEEE,
2018, pp. 1–7.

[23] Iota vulnerability report: Cryptanalysis of the curl hash function enabling
practical signature forgery attacks on the iota cryptocurrency. [On-
line]. Available: https://github.com/mit-dci/tangled-curl/blob/master/
vuln-iota.md

20

https://ethereum.stackexchange.com/questions/9883/why-is-my-node-synchronization-stuck-extremely-slow-at-block-2-306-843
https://ethereum.stackexchange.com/questions/9883/why-is-my-node-synchronization-stuck-extremely-slow-at-block-2-306-843
https://github.com/ethereum/wiki/wiki/Ethash/6e97c9cea49605264c6f4d1dc9e1939b1f89a5a3
https://github.com/ethereum/wiki/wiki/Ethash/6e97c9cea49605264c6f4d1dc9e1939b1f89a5a3
https://docs.ergoplatform.com/ErgoPow.pdf
https://docs.ergoplatform.com/ErgoPow.pdf
https://github.com/ergoplatform/Autolykos-GPU-miner
https://github.com/ergoplatform/Autolykos-GPU-miner
https://www.coindesk.com/ethereum-blockchain-feeling-the-difficulty-bomb-effect
https://www.coindesk.com/ethereum-blockchain-feeling-the-difficulty-bomb-effect
https://github.com/mit-dci/tangled-curl/blob/master/vuln-iota.md
https://github.com/mit-dci/tangled-curl/blob/master/vuln-iota.md

[24] A. Chepurnoy and M. Rathee, “Checking laws of the blockchain with
property-based testing,” in Blockchain Oriented Software Engineering (IW-
BOSE), 2018 International Workshop on. IEEE, 2018, pp. 40–47.

[25] T. Duong, A. Chepurnoy, and H.-S. Zhou, “Multi-mode cryptocurrency
systems,” in Proceedings of the 2nd ACM Workshop on Blockchains, Cryp-
tocurrencies, and Contracts. ACM, 2018, pp. 35–46.

[26] A. Kiayias, A. Miller, and D. Zindros, “Non-interactive proofs of proof-
of-work,” Cryptology ePrint Archive, Report 2017/963, 2017. Accessed:
2017-10-03, Tech. Rep., 2017.

[27] L. Luu, B. Buenz, and M. Zamani, “Flyclient super light client
for cryptocurrencies,” IACR Cryptology ePrint Archive, 2019. [Online].
Available: https://eprint.iacr.org/2019/226

[28] C. Pérez-Solà, S. Delgado-Segura, G. Navarro-Arribas, and J. Herrera-
Joancomart́ı, “Another coin bites the dust: an analysis of dust in utxo-
based cryptocurrencies,” Royal Society open science, vol. 6, no. 1, p. 180817,
2019.

[29] Ethereum network attacker’s ip address is trace-
able. [Online]. Available: https://www.bokconsulting.com.au/blog/
ethereum-network-attackers-ip-address-is-traceable/

[30] A. Chepurnoy and D. Meshkov, “On space-scarce economy in blockchain
systems.” IACR Cryptology ePrint Archive, vol. 2017, p. 644, 2017.

[31] M. Carlsten, H. Kalodner, S. M. Weinberg, and A. Narayanan, “On the
instability of bitcoin without the block reward,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2016, pp. 154–167.

[32] E. Krause, “A fifth of all bitcoin is missing. these crypto hunters can help,”
2018.

[33] 51% attack. [Online]. Available: https://en.bitcoinwiki.org/wiki/51%
25 attack

[34] Script of the ergo treasury box. [Online]. Available:
https://github.com/ScorexFoundation/sigmastate-interpreter/blob/
1b7b5a69035fc384b47c18ccf42b87dd95bbcf12/src/main/scala/org/
ergoplatform/ErgoScriptPredef.scala#L118

[35] Script of the ergo emission box. [Online]. Available:
https://github.com/ScorexFoundation/sigmastate-interpreter/blob/
1b7b5a69035fc384b47c18ccf42b87dd95bbcf12/src/main/scala/org/
ergoplatform/ErgoScriptPredef.scala#L74

21

https://eprint.iacr.org/2019/226
https://www.bokconsulting.com.au/blog/ethereum-network-attackers-ip-address-is-traceable/
https://www.bokconsulting.com.au/blog/ethereum-network-attackers-ip-address-is-traceable/
https://en.bitcoinwiki.org/wiki/51%25_attack
https://en.bitcoinwiki.org/wiki/51%25_attack
https://github.com/ScorexFoundation/sigmastate-interpreter/blob/1b7b5a69035fc384b47c18ccf42b87dd95bbcf12/src/main/scala/org/ergoplatform/ErgoScriptPredef.scala#L118
https://github.com/ScorexFoundation/sigmastate-interpreter/blob/1b7b5a69035fc384b47c18ccf42b87dd95bbcf12/src/main/scala/org/ergoplatform/ErgoScriptPredef.scala#L118
https://github.com/ScorexFoundation/sigmastate-interpreter/blob/1b7b5a69035fc384b47c18ccf42b87dd95bbcf12/src/main/scala/org/ergoplatform/ErgoScriptPredef.scala#L118
https://github.com/ScorexFoundation/sigmastate-interpreter/blob/1b7b5a69035fc384b47c18ccf42b87dd95bbcf12/src/main/scala/org/ergoplatform/ErgoScriptPredef.scala#L74
https://github.com/ScorexFoundation/sigmastate-interpreter/blob/1b7b5a69035fc384b47c18ccf42b87dd95bbcf12/src/main/scala/org/ergoplatform/ErgoScriptPredef.scala#L74
https://github.com/ScorexFoundation/sigmastate-interpreter/blob/1b7b5a69035fc384b47c18ccf42b87dd95bbcf12/src/main/scala/org/ergoplatform/ErgoScriptPredef.scala#L74

[36] Ergoscript, a cryptocurrency scripting language supporting noninteractive
zero-knowledge proofs. [Online]. Available: https://docs.ergoplatform.
com/ErgoScript.pdf

[37] Advanced ergoscript tutorial. [Online]. Available: https://docs.
ergoplatform.com/sigmastate protocols.pdf

[38] T. Nolan, “Alt chains and atomic transfers,” 2013. [Online].
Available: https://bitcointalk.org/index.php?topic=193281.msg2224949#
msg2224949

[39] Sybil attack. [Online]. Available: https://en.wikipedia.org/wiki/Sybil
attack

[40] A local exchange trading system on top of ergo. [Online]. Available:
https://ergoplatform.org/blog/2019 04 22-lets/

[41] An ico example on top of ergo. [Online]. Available: https://ergoplatform.
org/blog/2019 04 10-ico-example/

22

https://docs.ergoplatform.com/ErgoScript.pdf
https://docs.ergoplatform.com/ErgoScript.pdf
https://docs.ergoplatform.com/sigmastate_protocols.pdf
https://docs.ergoplatform.com/sigmastate_protocols.pdf
https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949
https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949
https://en.wikipedia.org/wiki/Sybil_attack
https://en.wikipedia.org/wiki/Sybil_attack
https://ergoplatform.org/blog/2019_04_22-lets/
https://ergoplatform.org/blog/2019_04_10-ico-example/
https://ergoplatform.org/blog/2019_04_10-ico-example/

	Introduction
	Ergo Vision
	Autolykos Consensus Protocol
	Ergo State
	Resiliency and Survivability
	Ergo's Native Token
	Emission

	Contractual Money
	Preliminaries For Ergo Contracts
	Contract Examples
	An Oracle Example
	A Mixing Example
	More Examples

