
Multi-Stage Contracts in the UTXO Model

Alexander Chepurnoy, Amitabh Saxena

Ergo Platform
{kushti,amitabh123}@protonmail.ch

Abstract. Smart contract platforms such as Bitcoin and Ethereum al-
low writing programs that run on a decentralized computer. Bitcoin uses
short-lived immutable data structures called UTXOs for data manipula-
tion. Ethereum, on the other hand uses, long-lived mutable data struc-
tures called accounts. UTXOs are easier to handle, less error prone and
scale better because the only operation we can do with them is to cre-
ate or destroy (i.e., spend) them. The code inside a UTXO is executed
only once, when it is spent. Additionally, this code refers to only local
context (i.e., it is stateless). In Ethereum’s account based system, there
is a shared global context which each account can access and modify,
thereby causing side affects. However, the benefit of persistent storage
offered by accounts makes up for these drawbacks. In this work, we de-
scribe how to emulate persistent storage in UTXO based systems using a
technique called transaction trees. This allows us to emulate the function-
ality of account-based systems such as Ethereum without the overhead
of accounts. We demonstrate this via several examples which include
contracts for a Rock-Paper-Scissors game, crowdfunding and an initial
coin offering (ICO). The contracts are created in a UTXO based smart
contract platform called Ergo that supports transaction trees.

1 Introduction

Smart contracts were envisioned in 1994 by Nick Szabo [1], a legal scholar and
cryptographer. He proposed the concept of self-executing contracts written in
executable code and stored in a replicated manner on distributed computers
that enforced the rules written in the code. Bitcoin [2] can be seen as the first
implementation of this concept using a fully decentralized ledger whose con-
tracts primarily pertain to transfer and store of value, i.e., as a currency system.
Ethereum [3] is an example of a general-purpose smart contract platform.

The limited application of Bitcoin allows optimizations focussed on long-
term survivability and scalability. Firstly, all data and code is stored in short-
lived immutable objects (called UTXOs [4]). A user can execute code inside a
UTXO by supplying some input (which may contain additional code). A UTXO
is destroyed once its code is executed (i.e., it is spent). Secondly, all computation
is performed within a local context; any code pertaining to a UTXO can only
operate on data for that UTXO and does not have access to the global state.

In contrast, Ethereum follows a different set of design principles in which the
code and data is contained in long-lived mutable objects called accounts. This

2 Alexander Chepurnoy, Amitabh Saxena

was done because UTXOs are stateless and do not provide persistent storage.
Not only can Ethereum code modify data in its own account, but also trigger
execution of code in other accounts. Thus, Ethereum code operates over a shared
global context representing all existing accounts.

The results of [5] allow UTXO-based systems to emulate Ethereum-like func-
tionality by reducing the computation to Rule-110 [6,7]. However, such reduc-
tions are not very efficient and a more practical solution for the same is desirable.
In particular, we need higher-level abstractions (instead of Rule-110) that enable
UTXO-based systems to efficiently emulate Ethereum functionality and main-
tain Bitcoin’s scalability. In this work we describe a technique called transaction
trees that allow writing advanced smart contracts in UTXO based systems. As
proof of concept, we implemented such contracts on a UTXO-based platform
called Ergo that supports transaction trees.

Context Enrichment. In Bitcoin and other existing UTXO systems, the
context is just the UTXO being processed. In order for a UTXO-based system
to support transaction trees, the context must be rich enough to contain at least
the entire spending transaction. More formally, for any UTXO based blockchain,
we can define the following levels of context, each extending the previous:

1. The current UTXO plus the blockchain height and time
2. The current spending transaction (other inputs and outputs)
3. The current block’s solution.
4. The current block (other sibling transactions)

Any platform at Level 2 and above is suitable for transaction trees. In this
regard, Bitcoin operates at Level 1 and Ergo at Level 3. Note that in Level 4 we
cannot check validity of transactions independently of other transactions in the
block. Hence it is more complex to implement Level 4.

In this work we show via examples how to create efficient Ethereum-like
contracts in the UTXO model using transaction trees. The examples include a
Rock-Paper-Scissors game, an Initial Coin Offering (ICO) campaign and a new
primitive called reversible addresses for securely storing funds.

2 Ergo Overview

The Ergo platform is a Level 3 UTXO based blockchain that allows general-
purpose smart contracts via a highly expressible language called ErgoScript.
Since Ergo follows the UTXO based model, all data and code is stored in im-
mutable objects called boxes. As in Bitcoin, a transaction in Ergo can spend (de-
stroy) multiple boxes and create new ones. A box is made of up to ten registers
labelled R0, R1, . . . R9, four of which are mandatory. R0 contains the monetary
value, R1 contains the guard script, R2 contains assets (tokens) and R3 contains
a unique identifier of 34 bytes made up of a transaction ID and an output index.
The guard script in R1 encodes a spending condition, which must be satisfied for
spending the box. Deploying a contract involves creating an unspent box with

Multi-Stage Contracts in the UTXO Model 3

the relevant ErgoScript code in R1 and populating other registers if necessary.
The contract is executed by spending the box.

Similar to Bitcoin, an ErgoScript program also cannot access the global state
and all computation must be done only using a local context. Unlike Bitcoin,
this context is quite rich and allows access to the entire spending transaction [8].
In particular, an ErgoScript program defines the spending condition using pred-
icates on the inputs and outputs of the transaction interleaved with Sigma pro-
tocols [9]. Thus, an ErgoScript program can enforce the spending transaction’s
structure (such as requiring that assets are transferable only to a certain ad-
dress). Additionally, the program can require the spender to prove knowledge of
the discrete logarithm of some public value using a protocol called proveDlog,
which is based on the Schnorr identification scheme [9]. All public keys (such as
alice and bob) in the following sections are of type proveDlog. Similar to Bit-
coin, a Pay-to-Script-Hash (P2SH) address in Ergo contains the hash of a script
that must be provided when spending from that address. The script encodes
the actual spending condition. Ergo also supports Pay-to-Script (P2S) address,
where the actual script is encoded in the address.

One useful feature of Ethereum is the ability to store and access a large
amount of data, which Ergo also provides. However, Ergo contracts do not store
the actual data in the blockchain. Rather, the data is stored off chain and a short
digest is stored in the blockchain. A user wishing to access or modify this data
must provide correct proofs of (non)-existence or modification for this digest, as
in the ICO example of Section 4.3.

3 Transaction Trees

A powerful feature of ErgoScript is the ability to specify the spending trans-
action’s structure in a fine-grained manner. Among the many things we can
specify, the important ones are: (1) the number of input and output boxes, (2)
the value of any box, and (3) the guarding script of any box. This allows us to
create transaction trees, where the contract in an input box requires an output
box to contain some predefined contract, thereby ensuring that only a certain
sequence of contracts are possible. We will use this to convert an Ethereum-style
long-lived contract into multi-stage contracts in the UTXO model, where each
stage encodes data and code to be carried over to the next stage.

Transaction Chains: Before describing transaction trees, we describe a sim-
pler primitive called transaction chains. A transaction chain is used for creating
a multi-stage protocol whose code does not contain loops or ‘if’ statements. A
transaction chain is created as follows:

1. Represent an Ethereum contract’s execution using n sequential steps, where
each step represents a transaction that modifies its state. The states before
and after a transaction are the start and end nodes respectively of a directed
graph, with the transaction as the edge joining them. As an example, a
3-stage contract, such as the ICO example of Section 4.3 is represented as:

4 Alexander Chepurnoy, Amitabh Saxena

s1 s2 s3

The states contain data and the code that was executed in the transaction.
2. Hardwire state n’s code and data inside state n− 1’s code. Then require the

code of state n− 1 to output a box containing state n’s code and data. An
example is given in the following pseudocode:

out.propositionBytes == state_n_code &&

out.R4[Int].get == SELF.R4[Int].get // ensure data is propagated

The above code uses the field propositionBytes of a box, which contains
the binary representation of its guard script as collection of bytes.

3. Repeat Step 2 by replacing (n, n− 1) by (n− 1, n− 2) while n > 2.

To avoid code size increase at each iteration, we should ideally work with
hashes, as in hash(out.propositionBytes) == state n code hash. However,
for clarity of presentation, we will skip this optimization.

Transaction Trees: A transaction tree is an extension of transaction chains
where the code can contain ‘if’ statements and simple loops, i.e., where some start
and end nodes are the same. The following figure illustrates a transaction tree.

s1 s2

s3

s4

An ‘if’ statement is handled using the following pseudocode.

if (condition) { out.propositionBytes == state_3_code }

else { out.propositionBytes == state_4_code }

A simple loop is a special case of the ‘if’ statement:

if (condition) { out.propositionBytes == state_2_code }

else { out.propositionBytes == SELF.propositionBytes }

Transaction graphs: Ergo supports a more advanced technique called trans-
action graphs, where cycles are allowed in contract references, as shown below.

s1

s2 s3

s4 s5

Discussion of such contracts is beyond the scope of this work and we refer the
reader to [10, Section 3.3.3] for an example of such a contract. All the examples
in this paper are based on transaction trees.

Multi-Stage Contracts in the UTXO Model 5

4 Multi-Stage Contracts

4.1 Reversible Addresses

An example of multi-stage contract is a reversible address, which has anti-theft
features in the following sense: any funds sent to a reversible address can only
be spent in way that allows payments to be reversed for a certain time. To mo-
tivate this feature, consider managing the hot-wallet of an exchange or mining
pool used for handling customer withdraws. A hot-wallet is an address for which
the private key is stored on the server. Such addresses are necessary for facili-
tating automated withdrawals. Being a hot-wallet, its private key is susceptible
to compromise and funds being stolen. We want to ensure that we are able to
recover any stolen funds in the event of such a compromise, provided that the
breach is discovered within, say, 24 hours of the first unauthorized withdraw.

Assume that alice is the public key of the hot-wallet and carol is the public
key of the trusted party. The private key of carol will be needed for reversing
payments and must be stored offline. Let b be the estimated number of blocks
in a 24 hour period. Let Bob with public key bob be a customer wishing to
withdraw funds, which will be paid out by the hot-wallet.

In Ethereum, we can do this by sending funds to an account having with a
contract Cb that allows carol to withdraw funds at least b blocks and after that
they can only be withdrawn by bob. We could use the same account (contract
instance) for multiple withdraws by Bob, but the optimal way is to have a new
account for each withdraw, emulating the UTXO model. The funds for this must
also come from another account with a contract Ca that ensure that withdraw
can only be done to a contract with the structure of Cb.

In Ergo, this is done by a two-stage protocol, where the second stage im-
plements Cb and the first stage implements Ca. The following script called
withdrawScript implements the second stage. This will be the guarding script
of the hot-wallet’s withdraw transaction paying to bob.

val bob = SELF.R4[SigmaProp].get // public key of customer withdrawing

val bobDeadline = SELF.R5[Int].get // max locking height

(bob && HEIGHT > bobDeadline) || (carol && HEIGHT <= bobDeadline)

This above script is referenced in the first stage script given next.

val isChange = {(b:Box) => b.propositionBytes == SELF.propositionBytes}

val isWithdraw = {(b:Box) =>

b.R5[Int].get >= HEIGHT + blocksIn24h &&

b.propositionBytes == withdrawScript

}

alice && OUTPUTS.forall({(b:Box) => isChange(b) || isWithdraw(b)})

The reversible address is the P2SH address of the above script. Any funds sent to
this address are subject to the withdraw rules that we desire. In the normal case, Bob
will spend the box after roughly blocksIn24h blocks. If an unauthorized transaction
from the hot-wallet is detected, an abort procedure is triggered using the private key

6 Alexander Chepurnoy, Amitabh Saxena

of carol and funds in any unspent boxes sent from the hot-wallet are diverted to a
secure address. Note that the trusted party (carol) is bound to the hot-wallet address.
A new address is needed for a different trusted party.

Although such addresses are designed for securing hot-wallet funds, the may have
other applications. One example is for automated-release escrow payments in online
shopping, where carol can be the public key of any mutually agreed adjudicating party.

4.2 Rock-Paper-Scissors Game

Our next example of a multi-stage contract is the Rock-Paper-Scissors game, which is
often used to introduce Ethereum [11]. The game is played between two players, Alice
and Bob. Each player chooses a secret independently and the game is decided after the
secrets are revealed. Let a, b ∈ Z3 be the secrets of Alice, Bob respectively, with the
understanding that (0, 1, 2) represent (rock, paper, scissors). If a = b then the game
is a draw, otherwise if a− b ∈ {1,−2} then Alice wins else Bob wins.

The first party to reveal the secret has a disadvantage, since the other party can
adaptively choose and win. In the real world, both parties reveal their secrets simulta-
neously to prevent this. In the virtual world, however, this cannot be enforced. Hence
this attack must be handled using cryptographic commitments, where the first party,
Alice, does not initially reveal her secret, but rather only a commitment to that secret.
The modified game using commitments is as follows:

1. Alice commits to her secret a by inputting her commitment c = Comm(a).
2. Bob inputs his public value b. At this stage, Alice knows if she won or lost.
3. Alice opens her commitment and reveals a, after which the winner is decided.

This works fine assuming that Alice is well-behaved, i.e., she always opens her
commitment irrespective of whether she won or lost. In the real world, however, we
also need to consider the possibility that Alice never opens her commitment. Border
cases such as these make smart contracts quite tricky, because once deployed, it is not
possible to add “bug-fixes” to them. In this example, we must penalize Alice (with a
loss) if she does not open her commitment within some stipulated time.

The complete game is coded in ErgoScript in two stages. In the first stage, Alice
creates a start-game box that encodes her game rules. In the second stage, Bob spends
the start-game box and creates two end-game boxes spendable by the winner. These
new boxes indicate that the game has ended.

To start the game, Alice decides a game amount x (of Ergo’s primary token), which
each player must contribute. She then selects a secret s and computes a commitment
c = H(a||s) to a. Finally, she locks up x tokens along with her commitment c inside
the start-game box protected by the following script:

OUTPUTS.forall(

{(out:Box) =>

val b = out.R4[Byte].get

val bobDeadline = out.R6[Int].get

bobDeadline >= HEIGHT+30 && out.value >= SELF.value &&

(b == 0 || b == 1 || b == 2) &&

out.propositionBytes == outScript

}

) && OUTPUTS.size == 2 && OUTPUTS(0).R7[SigmaProp].get == alice &&

OUTPUTS(0).R4[Byte].get == OUTPUTS(1).R4[Byte].get // same b

Multi-Stage Contracts in the UTXO Model 7

The above code requires that the spending transaction must create exactly two
outputs, one paying to each player in the event of a draw or both paying to the winner
otherwise. In particular, the code requires that (1) register R7 of the first output must
contain Alice’s public key (for use in the draw scenario), (2) register R4 of each output
must contain Bob’s choice, and (3) each output must contain at least x tokens protected
by outScript, which is given below:

val s = getVar[Coll[Byte]](0).get // Alice’s secret byte string s

val a = getVar[Byte](1).get // Alice’s secret choice a

val b = SELF.R4[Byte].get // Bob’s public choice b

val bob = SELF.R5[SigmaProp].get // Bob’s public key

val bobDeadline = SELF.R6[Int].get // after this, Bob wins by default

val drawPubKey = SELF.R7[SigmaProp].get

val valid_a = (a == 0 || a == 1 || a == 2)

val validCommitment = blake2b256(s ++ Coll(a)) == c

val validAliceChoice = valid_a && validAliceChoice

val aliceWins = (a - b) == 1 || (a - b) == -2

val receiver = if (a == b) drawPubKey else (if (aliceWins) alice else bob)

(bob && HEIGHT > bobDeadline) || (receiver && validAliceChoice)

The above code protects the two end-game boxes that Bob generates. The condition
(bob && HEIGHT > bobDeadline) guarantees that if Alice does not open her commit-
ment before a certain deadline, then Bob automatically wins. Note that Bob has to
ensure that R7 of the second output contains his public key. Additionally, he must
ensure that R5 of both outputs contains his public key (see below). We don’t encode
these conditions because if Bob doesn’t follow the protocol, he will automatically lose.

4.3 Initial Coin Offering

Another popular use-case of Ethereum is an Initial Coin Offering (ICO) contract. An
ICO mirrors an Initial Public Offering (IPO) and provides a mechanism for a project
to collect funding in some tokens and then issue “shares” (in the form of some other
tokens) to investors. Generally, an ICO comprises of 3 stages:

1. Funding: During this period, investors are allowed to fund the project.
2. Issuance: A new asset token is created and issued to investors.
3. Withdrawal: Investors can withdraw their newly issued tokens.

Compared to the previous examples, our ICO contract is quite complex, since it
involves multiple stages and parties. The number of investors may run into thousands,
and the naive solution would store this data in the contract, as in the ERC-20 stan-
dard [12]. Unlike Ethereum, Ergo does not permit storing large datasets in a contract.
Rather, we store only a 40-bytes header of (a key, value) dictionary, that is authenti-
cated like a Merkle tree [13]. To access some elements in the dictionary, or to modify
it, a spending transaction should provide lookup or modification proofs. This allows a
contract to authenticate large datasets using very little storage and memory.

Funding: The project initiates the ICO by creating a box with the guard script
given below. The box also contains a authenticating value for an empty dictionary of
(investor, balance) pairs in R5, where investor is the hash of a script that will guard
the box with the withdrawn tokens (once the funding period ends).

8 Alexander Chepurnoy, Amitabh Saxena

val selfIndexIsZero = INPUTS(0).id == SELF.id

val proof = getVar[Coll[Byte]](1).get

val toAdd = INPUTS.slice(1, INPUTS.size).map({(b: Box) =>

val pk = b.R4[Coll[Byte]].get

val value = longToByteArray(b.value)

(pk, value)

})

val modifiedTree = SELF.R5[AvlTree].get.insert(toAdd, proof).get

val expectedTree = OUTPUTS(0).R5[AvlTree].get

val selfOutputCorrect =

if (HEIGHT < 2000) OUTPUTS(0).propositionBytes == SELF.propositionBytes

else OUTPUTS(0).propositionBytes == issuanceScript

val outputsCorrect = OUTPUTS.size == 1 && selfOutputCorrect

selfIndexIsZero && outputsCorrect && modifiedTree == expectedTree

The first funding transaction spends this box and creates a box with the same
script and updated data. Further funding transactions spend the box created from
the previous funding transaction. The box checks that it is first input of each funding
transaction, which must have other inputs belonging to investors. The investor inputs
contain a hash of the withdraw script in register R4. The script also checks (via proofs)
that hashes and monetary values of the investing inputs are correctly added to the
dictionary of the new box, which must be only output with the correct amount of ergs
(we ignore fee in this example). In this stage, which lasts at least till height 2,000,
withdraws are not permitted and ergs can only be put into the project. The first
transaction with height of 2,000 or more should keep the same data but change the
output’s script called issuanceScript described next.

Issuance: This stage requires only one transaction to get to the next stage (the
withdrawal stage). The spending transactions makes the following modifications. Firstly,
it changes the list of allowed operations on the dictionary from “inserts only” to “re-
movals only”. Secondly, the contract checks that the proper amount of ICO tokens are
issued. In Ergo, each transaction can issue at most one new kind of token, with the
(unique) identifier of the first input box. The issuance contract checks that a new token
is issued with amount equal to the nano-ergs collected till now. Thirdly, the contract
checks that a spending transaction is indeed re-creating the box with the guard script
corresponding to the next stage, the withdrawal stage. Finally, the contract checks that
the spending transaction has 2 outputs (one for the project tokens and one for the ergs
withdrawn by the project). The complete script is given below.

val openTree = SELF.R5[AvlTree].get

val closedTree = OUTPUTS(0).R5[AvlTree].get

val correctDigest = openTree.digest == closedTree.digest

val correctKeyLength = openTree.keyLength == closedTree.keyLength

val removeOnlyTree = closedTree.enabledOperations == 4

val correctValue = openTree.valueLengthOpt == closedTree.valueLengthOpt

val tokenId: Coll[Byte] = INPUTS(0).id

val tokenIssued = OUTPUTS(0).tokens(0)._2

val correctTokenNumber = OUTPUTS(0).tokens.size == 1 &&

OUTPUTS(1).tokens.size == 0

val correctTokenIssued = SELF.value == tokenIssued

Multi-Stage Contracts in the UTXO Model 9

val correctTokenId = OUTPUTS(0).R4[Coll[Byte]].get == tokenId &&

OUTPUTS(0).tokens(0)._1 == tokenId

val valuePreserved = OUTPUTS.size == 2 && correctTokenNumber &&

correctTokenIssued && correctTokenId

val stateChanged = OUTPUTS(0).propositionBytes == withdrawScript

val treeIsCorrect = correctDigest && correctValue &&

correctKeyLength && removeOnlyTree

projectPubKey && treeIsCorrect && valuePreserved && stateChanged

Withdrawal: Investors are now allowed to withdraw ICO tokens under a guard
script whose hash is stored in the dictionary. Withdraws are done in batches of N .
A withdrawing transaction, thus, has N + 1 outputs; the first output carries over the
withdrawal sub-contract and balance tokens, and the remaining N outputs have guard
scripts and token values as per the dictionary. The contract requires two proofs for
the dictionary elements: one proving that values to be withdrawn are indeed in the
dictionary, and the second proving that the resulting dictionary does not have the
withdrawn values. The complete script called withdrawScript is given below

val removeProof = getVar[Coll[Byte]](2).get

val lookupProof = getVar[Coll[Byte]](3).get

val withdrawIndexes = getVar[Coll[Int]](4).get

val tokenId: Coll[Byte] = SELF.R4[Coll[Byte]].get

val withdrawals = withdrawIndexes.map({(idx: Int) =>

val b = OUTPUTS(idx)

if (b.tokens(0)._1 == tokenId)

(blake2b256(b.propositionBytes), b.tokens(0)._2)

else

(blake2b256(b.propositionBytes), 0L)

})

val withdrawValues = withdrawals.map({(t: (Coll[Byte], Long)) => t._2})

val total = withdrawValues.fold(0L, {(l1: Long, l2: Long) => l1 + l2 })

val toRemove = withdrawals.map({(t: (Coll[Byte], Long)) => t._1})

val initialTree = SELF.R5[AvlTree].get

val removedValues = initialTree.getMany(toRemove, lookupProof).map(

{(o: Option[Coll[Byte]]) => byteArrayToLong(o.get)}

)

val valuesCorrect = removedValues == withdrawValues

val modifiedTree = initialTree.remove(toRemove, removeProof).get

val outTreeCorrect = OUTPUTS(0).R5[AvlTree].get == modifiedTree

val selfTokenCorrect = SELF.tokens(0)._1 == tokenId

val outTokenCorrect = OUTPUTS(0).tokens(0)._1 == tokenId

val outTokenCorrectAmt = OUTPUTS(0).tokens(0)._2 + total == SELF.tokens(0)._2

val tokenPreserved = selfTokenCorrect && outTokenCorrect && outTokenCorrectAmt

val selfOutputCorrect = OUTPUTS(0).propositionBytes == SELF.propositionBytes

outTreeCorrect && valuesCorrect && selfOutputCorrect && tokensPreserved

Note that the above ICO example contains many simplifications. For instance, we
don’t consider fee when spending the project box. Additionally, the project does not
self-destruct after the withdraw stage. We refer the reader to [14] for the full example.

10 Alexander Chepurnoy, Amitabh Saxena

5 Conclusion

We gave examples demonstrating that, despite being UTXO-based, Ergo can support
complex multi-stage contracts found in Ethereum. In particular, we described:

1. A Rock-Papers-Scissors game with provable fairness (Section 4.2).
2. Reversible Addresses having anti-theft features (Section 4.1).
3. A full featured ICO that accepts funding in ergs (Section 4.3).

The examples used the idea of transaction trees to emulate persistent storage by
linking several UTXOs containing small pieces of code to form a large multi-stage
protocol. We refer the reader to ErgoScript repository and tutorials [8,10] for addi-
tional examples of multi-stage contracts, including a Local Exchange Trading Systems
(LETS), non-interactive mixing, atomic swaps and many more.

References

1. Nick Szabo. The idea of smart contracts. Nick Szabo’s Papers and Concise Tuto-
rials, 6, 1997.

2. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https:

//bitcoin.org/bitcoin.pdf, 2008.
3. Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger.

Ethereum project yellow paper, 151:1–32, 2014.
4. Jameson Lopp. Unspent transactions outputs in Bitcoin. http://statoshi.info/

dashboard/db/unspent-transaction-output-set, accessed Nov 7, 2016.
5. Alexander Chepurnoy, Vasily Kharin, and Dmitry Meshkov. Self-reproducing coins

as universal turing machine. In Joaquin Garcia-Alfaro, Jordi Herrera-Joancomart́ı,
Giovanni Livraga, and Ruben Rios, editors, Data Privacy Management, Cryptocur-
rencies and Blockchain Technology, pages 57–64, Cham, 2018. Springer Interna-
tional Publishing.

6. Matthew Cook. A concrete view of rule 110 computation. Electronic Proceedings
in Theoretical Computer Science, 1:31–55, Jun 2009.

7. Turlough Neary and Damien Woods. P-completeness of cellular automaton rule
110. In International Colloquium on Automata, Languages, and Programming,
pages 132–143. Springer, 2006.

8. Ergoscript, a cryptocurrency scripting language supporting noninteractive zero-
knowledge proofs. https://docs.ergoplatform.com/ErgoScript.pdf, 03 2019.

9. Ivan Damg̊ard. On Σ-Protocols, 2010. http://www.cs.au.dk/~ivan/Sigma.pdf.
10. Advanced ergoscript tutorial. https://docs.ergoplatform.com/sigmastate_

protocols.pdf, 03 2019.
11. Kevin Delmolino, Mitchell Arnett, Ahmed E. Kosba, Andrew Miller, and Elaine

Shi. Step by step towards creating a safe smart contract: Lessons and insights from
a cryptocurrency lab. IACR Cryptology ePrint Archive, 2015:460, 2015.

12. The Ethereum Wiki. Erc20 token standard. https://theethereum.wiki/w/index.
php/ERC20_Token_Standard, 2018.

13. Leonid Reyzin, Dmitry Meshkov, Alexander Chepurnoy, and Sasha Ivanov. Im-
proving authenticated dynamic dictionaries, with applications to cryptocurrencies.
In Aggelos Kiayias, editor, Financial Cryptography and Data Security, pages 376–
392, Cham, 2017. Springer International Publishing.

14. Alexander Chepurnoy. An ico example on top of ergo. https://ergoplatform.

org/en/blog/2019_04_10-ico-example/, 2019.

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://statoshi.info/dashboard/db/unspent-transaction-output-set
http://statoshi.info/dashboard/db/unspent-transaction-output-set
https://docs.ergoplatform.com/ErgoScript.pdf
http://www.cs.au.dk/~ivan/Sigma.pdf
https://docs.ergoplatform.com/sigmastate_protocols.pdf
https://docs.ergoplatform.com/sigmastate_protocols.pdf
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://ergoplatform.org/en/blog/2019_04_10-ico-example/
https://ergoplatform.org/en/blog/2019_04_10-ico-example/

	Multi-Stage Contracts in the UTXO Model

