
ErgoTree Specification for Ergo Protocol 1.0

Alexander Slesarenko

March 1, 2020

Abstract

In this document we describe a typed abstract syntax of the language called ErgoTree which
is used to define logical propositions protecting boxes (generalization of coins) in the Ergo
blockchain. Serialized ErgoTree expressions are written into UTXO boxes and then evaluated by
the transaction verifier. Most of Ergo users don’t use ErgoTree directly since they are developing
contracts in higher-level language, such as ErgoScript, which is then compiled to ErgoTree.
The reference implementation of ErgoTree uses Scala, however alternative implementations can
use other languages. This document provides a language neutral specification of ErgoTree for
developers of alternative ErgoTree implementations.

Contents

1 Introduction 2

2 ErgoTree As A Language 4

3 Typing 6

4 Evaluation 7
4.1 Semantics . 7

5 Serialization 9
5.1 Type Serialization . 10
5.2 Data Serialization . 13
5.3 Constant Serialization . 15
5.4 Expression Serialization . 15
5.5 ErgoTree serialization . 15

6 Compliant Implementation 17

A Predefined types 19
A.1 Byte type . 19
A.2 Short type . 20
A.3 Int type . 21
A.4 Long type . 21
A.5 BigInt type . 22
A.6 GroupElement type . 22

1

A.7 SigmaProp type . 23
A.8 Box type . 23
A.9 AvlTree type . 25
A.10 Header type . 28
A.11 PreHeader type . 30
A.12 Context type . 31
A.13 Global type . 33
A.14 Coll type . 33
A.15 Option type . 37

B Predefined global functions 38

C Serialization format of ErgoTree nodes 48

D Motivations 62
D.1 Type Serialization format rationale . 62
D.2 Constant Segregation rationale . 62

E Compressed encoding of integer values 65
E.1 VLQ encoding . 65
E.2 ZigZag encoding . 65

1 Introduction

The design space of programming languages is very broad ranging from general-purpose languages
like C,Java,Python up to specialized languages like SQL, HTML, CSS, etc. To serve as a platform
for contractual money, the language for writing contracts on blockchain must have a number of
properties.

First, the language and the contract execution environment should be deterministic. Once
created and stored in the blockchain, a smart contract should always behave predictably and
deterministically, it should only depend on well-defined data context and nothing else. As long
as data context doesn’t change, any execution of the contract should return the same value any
time it is executed, on any execution platform using any compliant language implementation. No
general purpose programming language is deterministic at least because all of them provide non-
deterministic operations. ErgoTree doesn’t have non-deterministic operations.

Second, the language should facilitate spam-resistantance, i.e. defending against attacks when
malicious contracts can overload the network nodes and bring the blockchain down [Ler17]. To
fullfill this goal transaction model of ErgoTree support predictable cost estimation, the fast calcu-
lation of contract execution costs to ensure the evaluation cost of the given transaction is always
within acceptable bounds. In a general (turing-complete) case, such cost prediction is not possible
and require special mechanisms such as Gas [Woo14]. Gas limits on transactions indeed protect
the network from spam attacks, but at the expence of the users who need to be careful to specifiy
the gas limit large enough for the transaction to complete, otherwise the gas used for the failed
transaction will be kept by the miners for their work and the user will not get it back.

2

Third, the contracts language should be simple yet expressive enough. It should be possible
to efficiently implement wide range of practical applications. For example ErgoTree is not turing-
complete but it is co-designed with the capabilities of the Ergo blockchain platform itself, making
the whole system turing-complete as demonstrated in [CKM18]. Simplicity of the language enables
spam-resistantance.

Forth, simplicity and expressivity are often the characteristics of domain-specific languages [Fow10,
Hud96]. From this perspective ErgoTree is an intermediate representation of a DSL for writ-
ing smart contracts. The language directly captures the ubiquitous language [Ubi] of the Ergo
blockchain directly manipulating with Boxes, Tokens, Zero-Knowledge Sigma-Propostions etc.
These are the novel first-class features of Ergo platform which it provides for user applicatons.
It has complementary frontend language called ErgoScript with syntax of Scala/Kotlin. ErgoScript
aims to address the large audience of programmers with minimum surprise and WTF ratio [WTF].
The syntax of ErgoScript is inspired by Scala/Kotlin and also shares a common subset with Java
and C#, thus if you are proficient in any of these languages you will be right at home using
ErgoScript as well.

And last, but not the least, ErgoTree as a core language of Ergo platform, should be optimized
for compact storage and fast execution.

We implemented a reference implementation of ErgoTree according to the specification de-
scribed in this document and provide a guidance in section 6 for development of an alternative
and compliant protocol implementation. We don’t describe ErgoScript is this document and focus
exclusively on ErgoTree.

3

2 ErgoTree As A Language

In this section we define an abstract syntax for the ErgoTree language. It is a typed call-by-value,
higher-order functional language without recursion. It supports single-assignment blocks, tuples,
optional values, indexed collections with higher-order operations, short-cutting logicals, ternary
’if’ with lazy branches. All operations are deterministic, without side effects and all values are
immutable.

The semantics of ErgoTree is specified by first translating it to a core calculus (Core-λ) and
then by giving its denotational evaluation semantics. Typing rules are given in section 3 and the
evaluation semantics is given in section 4. In section 5 we describe serialization format of ErgoTree.
Guidance on compliant interpreter implementation is provided in section 6.

ErgoTree is defined below using abstract syntax notation as shown in Figure 1. This corresponds
to Value class of the reference implementation, which can be serialized to an array of bytes using
ValueSerializer. The mnemonic names shown in the figure correspond to classes of the reference
implementation.

Set Name Syntax Mnemonic Description

T 3 T ::= P SPredefType predefined types (see Appendix A)
| (T1, . . . , Tn) STuple tuple of n elements (see Tuple type)
| (T1, . . . , Tn)→ T SFunc function of n arguments (see Func type)
| Coll[T] SCollection collection of elements of type T
| Option[T] SOption optional value of type T

Term 3 e ::= C(v, T) Constant typed constants
| x ValUse variables

| λ(xi : Ti).e FuncValue lambda expression
| ef 〈ei〉 Apply application of functional expression
| e.m〈ei〉 MethodCall method invocation
| (e1, . . . , en) Tuple constructor of tuple with n items
| δ〈ei〉 primitive application (see Appendix B)
| if (econd) e1 else e2 If if-then-else expression
| {val xi = ei; e} BlockValue block expression

cd ::= trait T {msi} STypeCompanion type declaration

ms ::= def m[τi](xi : Ti) : T SMethod method signature declaration

Figure 1: Abstract syntax of ErgoScript language

We assign types to the terms in a standard way following typing rules shown in Figure 3.
Constants keep both the type and the data value of that type. To be well-formed the type of

the constant should correspond to its value.
Variables are always typed and identified by unique id, which refers to either lambda bound

variable or a val bound variable.
Lambda expressions can take a list of lambda-bound variables which can be used in the body

expression, which can be a block expression.
Function application takes an expression of functional type (e.g. T1 → Tn) and a list of argu-

ments. The reason we do not write it ef (e) is that this notation suggests that (e) is a subterm,
which it is not.

4

Method invocation allows to apply functions defined as methods of types. If expression e has
type T and and method m is declared in the type T then method invocation e.m(args) is defined
for the appropriate args. See section A for the specification of types and their methods.

Conditional expressions of ErgoTree are strict in the condition and lazy in both of the branches.
Each branch is an expression which is executed depending on the result of condition. This laziness
of branches specified by lowering to Core-λ (see Figure 2).

Block expression contains a list of val definitions of variables. To be wellformed each subsequent
definition can only refer to the previously defined variables. Result of block execution is the result
of the resulting expression e, which can refer to any variable of the block.

Each type may be associated with a list of method declarations, in which case we say that
the type has methods. The semantics of the methods is the same as in Java. Having an instance
of some type with methods it is possible to call methods on the instance with some additional
arguments. Each method can be parameterized by type variables, which can be used in method
signature. Because ErgoTree supports only monomorphic values each method call is monomorphic
and all type variables are assigned to concrete types (see MethodCall typing rule in Figure 3).

The semantics of ErgoTree is specified by translating all its terms to a somewhat lower and
simplified language, which we call Core-λ and which doesn’t have lazy operations. This lowering
translation is shown in Figure 2.

TermErgoTree TermCore

LJλ(xi : Ti).eK 7→ λ(xi : Ti).LJeK
LJef 〈ei〉K 7→ LJef K〈LJ(ei)K〉
LJe.m〈ei〉K 7→ LJeK.m〈LJeiK〉
LJ(e1, . . . , en)K 7→ (LJe1K, . . . ,LJenK)
LJe1 || e2K 7→ LJif (e1) true else e2K
LJe1 && e2K 7→ LJif (e1) e2 else falseK
LJif (econd) e1 else e2K 7→ (if(LJecondK, λ(: Unit).LJe1K, λ(: Unit).LJe2K))〈〉
LJ{val xi : Ti = ei; e}K 7→ (λ(x1 : T1).(. . . (λ(xn : Tn).LJeK)〈LJenK〉 . . .))〈LJe1K〉
LJδ〈ei〉K 7→ δ〈LJeiK〉
LJeK 7→ e

Figure 2: Lowering to Core-λ

Note that if (econd) e1 else e2 term of ErgoTree has lazy evaluation of its branches whereas
right-hand-side if is a primitive operation and have strict evaluation of the arguments. The laziness
is achieved by using lambda expressions of Unit ⇒ Boolean type.

We translate logical operations (||, &&) of ErgoTree, which are lazy on second argument to if

term of ErgoTree, which is recursively translated to the corresponding Core-λ term.
Syntactic blocks of ErgoTree are completely eliminated and translated to nested lambda ex-

pressions, which unambiguously specify evaluation semantics of blocks. The semantics of Core-λ
is specified in Section 4.

Note, that we use lowering transformation only to specify semantics. Implementations can
optimize by evaluating ErgoTree directly as long as the semantics is preserved.

5

3 Typing

ErgoTree is a strictly typed language, in which every term should have a type in order to be
wellformed and evaluated. Typing judgement of the form Γ ` e : T say that e is a term of type
T in the typing context Γ.

Γ ` C(,T) : T (Const) Γ,x : T ` x : T (Var)
Γ ` ei: Ti ptype(δ,Ti): (T1,...,Tn)→T

δ〈ei〉: T (Prim)

Γ ` e1: T1 ... Γ ` en: Tn
Γ ` (e1,...,en) : (T1,...,Tn) (Tuple)

Γ ` e : I, ei: Ti mtype(m,I,Ti) : (I,T1,...,Tn)→T
e.m〈ei〉: T (MethodCall)

Γ,xi: Ti ` e : T

Γ ` λ(xi:Ti).e : (T0,...,Tn)→T
(FuncValue)

Γ ` ef : (T1,...,Tn)→T Γ ` ei: Ti
Γ ` ef 〈ei〉 : T (Apply)

Γ ` econd: Boolean Γ ` e1: T Γ ` e2: T
Γ ` if (econd) e1 else e2 : T (If)

Γ ` e1: T1 ∧ ∀k∈{2,...,n} Γ,x1: T1,...,xk−1: Tk−1 ` ek: Tk ∧ Γ,x1: T1,...,xn: Tn ` e: T

Γ ` {val xi=ei; e} : T
(BlockValue)

Figure 3: Typing rules of ErgoTree

Note that each well-typed term has exactly one type hence we assume there exists a funcion
termType : Term→ T which relates each well-typed term with the corresponding type.

Primitive operations can be parameterized with type variables, for example addition (B.0.19)
has the signature def +[T](left: T, right: T): T where T is one of the numeric types (Table 8).
Function ptype returns the type of a primitive operation specialized for the concrete types of its
arguments, for example ptype(+, Int, Int) = (Int, Int)→ Int.

Similarily, the function mtype returns a type of method specialized for concrete types of the
arguments of the MethodCall term.

BlockValue rule defines a type of well-formed block expression. It assumes a total ordering on
val definitions. If a block expression is not well-formed than it cannot be typed and evaluated.

The rest of the rules are standard for typed lambda calculus.

6

4 Evaluation

In this section we describe evaluation semantics of the ErgoTree language and the corresponding
reference implementation of the interpreter.

4.1 Semantics

Evaluation of ErgoTree is specified by its translation to Core-λ, whose terms form a subset of
ErgoTree terms. Thus, typing rules of Core-λ form a subset of typing rules of ErgoTree.

Here we specify evaluation semantics of Core-λ, which is based on call-by-value (CBV) lambda
calculus. Evaluation of Core-λ is specified using denotational semantics. To do that, we first
specify denotations of types, then typed terms and then equations of denotational semantics.

Definition 1 (values, producers)

� The following Core-λ terms are called values:

V :== x | C(d, T) | λx.M

� All Core-λ terms are called producers. (This is because, when evaluated, they produce a
value.)

We now describe and explain a denotational semantics for the Core-λ language. The key
principle is that each type A denotes a set JAK whose elements are the denotations of values of the
type A.

Thus, the type Boolean denotes the 2-element set {true, false}, because there are two values
of type Boolean. Likewise the type (T1, . . . , Tn) denotes (JT1K, . . . , JTnK) because a value of type
(T1, . . . , Tn) must be of the form (V1, . . . , Vn), where each Vi is value of type Ti.

Given a value V of type A, we write JV K for the element of A that it denotes. Given a close
term M of type A, we recall that it produces a value V of type A. So M will denote an element
JMK of JAK.

A value of type A → B is of the form λx.M . This, when applied to a value of type A gives a
value of type B. So A → B denotes JAK → JBK. It is true that the syntax appears to allow us to
apply λx.M to any term N of type A. But N will be evaluated before it interracts with λx.M , so
λx.M is really only applied to the value that N produces (hence the semantics is call-by-value).

Definition 2 A context Γ is a finite sequence of identifiers with value types x1 : A1, . . . , xn : An.
Sometimes we omit the identifiers and write Γ as a list of value types.

Given a context Γ = x1 : A1, . . . , xn : An, an environment (list of bindings for identifiers)
associates to each xi as value of type Ai. So the environment denotes an element of (JA1K, . . . , JAnK),
and we write JΓK for this set.

Given a Core-λ term Γ ` M : B, we see that M , together with environment, gives a closed
term of type B. So M denotes a function JMK from JΓK to JBK.

In summary, the denotational semantics is organized as follows.

� A type A denotes the set JAK

7

� A context x1 : A1, . . . , xn : An denotes the set (JA1K, . . . , JAnK)

� A term Γ ` M : B denotes a function JMK : JΓK→ JBK

The denotations of types and terms is given in Figure 4.

Figure 4: Denotational semantics of Core-λ

The denotations of Core-λ types

JBooleanK = {true, false}
JPK = see set of values in Appendix A
J(T1, . . . , Tn)K = (JT1K, . . . , JTnK)
JA→ BK = JAK→ JBK

The denotations of Core-λ terms which together specify the function J K : JΓK→ JT K

JxK〈(ρ, x 7→ x, ρ′)〉 = x
JC(d, T)K〈ρ〉 = d

J(Mi)K〈ρ〉 = (JMiK〈ρ〉)
Jδ〈N〉K〈ρ〉 = (JδK〈ρ〉)〈v〉 where v = JNK〈ρ〉
Jλx.MK〈ρ〉 = λx.JMK〈(ρ, x 7→ x)〉
JMf 〈N〉K〈ρ〉 = (JMf K〈ρ〉)〈v〉 where v = JNK〈ρ〉
JMI .m〈Ni〉K〈ρ〉 = (JMIK〈ρ〉).m〈vi〉 where vi = JNiK〈ρ〉

8

5 Serialization

This section defines a binary format, which is used to store ErgoTree contracts in persistent stores,
to transfer them over the wire and to enable cross-platform interoperation.

Terms of the language described in Section 2 can be serialized to array of bytes to be stored in
Ergo blockchain (e.g. as Box.propositionBytes).

When the guarding script of an input box of a transaction is validated the propositionBytes

array is deserialized to an ErgoTree IR (represented by the ErgoTree class), which can be evaluated
as it is specified in Section 4.

Here we specify the serialization procedure in general. The serialization format of ErgoTree
types (SType class) and nodes (Value class) is specified in section 5.1 and Appendix C correspond-
ingly.

Table 1 shows size limits which are checked during contract deserialization, which is important
to resist malicious script attacks.

Table 1: Serialization limits

Constant Value Description

V LQmax 10 Maximum size of VLQ encoded byte sequence (See VLQ formats E.1)

Tmax 100 Maximum size of serialized type term (see Type format 5.1)

Dmax 4Kb Maximum size of serialized data instance (see Data format 5.2)

Cmax = Tmax +Dmax Maximum size of serialized data instance (see Const format 5.3)

Exprmax 4Kb Maximum size of serialized ErgoTree term (see Expr format 5.4)

ErgoTreemax 4Kb Maximum size of serialized ErgoTree contract (see ErgoTree format 5.5)

All the serialization formats which are uses and defined thoughout this section are listed in
Table 2 which introduces a name for each format and also shows the number of bytes each format
may occupy in the byte stream.

Table 2: Serialization formats

Format #bytes Description
Byte 1 8-bit signed two’s-complement integer
Short 2 16-bit signed two’s-complement integer (big-endian)
Int 4 32-bit signed two’s-complement integer (big-endian)
Long 8 64-bit signed two’s-complement integer (big-endian)
UByte 1 8-bit unsigned integer
UShort 2 16-bit unsigned integer (big-endian)
UInt 4 32-bit unsigned integer (big-endian)
ULong 8 64-bit unsigned integer (big-endian)
VLQ(UShort) [1..3] Encoded unsigned Short value using VLQ. See [VLQa, VLQb] and E.1
VLQ(UInt) [1..5] Encoded unsigned 32-bit integer using VLQ.
VLQ(ULong) [1..V LQmax] Encoded unsigned 64-bit integer using VLQ.
Bits [1..Bitsmax] A collection of bits packed in a sequence of bytes.
Bytes [1..Bytesmax] A sequence of bytes, which size is stored elsewhere or wellknown.
Type [1..Tmax] Serialized type terms of ErgoTree. See 5.1
Data [1..Dmax] Serialized data values of ErgoTree. See 5.2
GroupElement 33 Serialized elements of eliptic curve group. See 5.2.1
SigmaProp [1..SigmaPropmax] Serialized sigma propositions. See 5.2.2
AvlTree 44 Serialized dynamic dictionary digest. See 5.2.3
Constant [1..Cmax] Serialized ErgoTree constants (values with types). See 5.3
Expr [1..Exprmax] Serialized expression terms of ErgoTree. See 5.4
ErgoTree [1..ErgoTreemax] Serialized instances of ErgoTree contracts. See 5.5

We use [1..n] notation when serialization may produce from 1 to n bytes depending of actual

9

data instance.
Serialization format of ErgoTree is optimized for compact storage and very fast deserialization.

In many cases serialization procedure is data dependent and thus have branching logic. To express
this complex serialization logic in the specification we use a pseudo-language with operators like
for, match, if, optional. The language allows to specify a structure out of simple serialization
slots. Each slot specifies a fragment of serialized stream of bytes, whereas operators specifiy how
the slots are combined together to form the resulting stream of bytes. The notation is summarized
in Table 3.

Table 3: Serialization Notation

Notation Description

JT K where T - type Denotes a set of values of type T

v ∈ JT K The value v belongs to the set JT K
v : T Same as v ∈ JT K
match (t, v) Pattern match on pair (t, v) where t, v - values

with (Unit, v ∈ JUnitK) Pattern case

for i = 1 to len
Call the given serialize function repeatedly. The outputs bytes of all invocations are
concatenated and become the output of the for statement.

serialize(vi)
end for

if condition then Serialize one of the branches depending of the condition. The output bytes of the
executed branch becomes the output of the if statement.serialize1(v1)

else

serialize2(v2)
end if

In the next section we describe how types (like Int, Coll[Byte], etc.) are serialized, then we
define serialization of typed data. This will give us a basis to describe serialization of Constant
nodes of ErgoTree. From that we will proceed to serialization of arbitrary ErgoTree trees.

5.1 Type Serialization

For motivation behind this type encoding please see Appendix D.1.

5.1.1 Distribution of type codes

The whole space of 256 one byte codes is divided as shown in Figure 4.

Table 4: Distribution of type codes between Data and Function types

Value/Interval Distribution

0x00 special value to represent undefined type (NoType in ErgoTree)

0x01 - 0x6F(111) data types including primitive types, arrays, options aka nullable types, classes (in
future), 111 = 255 - 144 different codes

0x70(112) - 0xFF(255) function types T1 => T2, 144 = 12 x 12 different codes 1

5.1.2 Encoding of Data Types

There are eight different values for embeddable types and 3 more are reserved for the future exten-
sions. Each embeddable type has a type code in the range 1,...,11 as shown in Figure 5.

10

Table 5: Embeddable Types

Code Type

1 Boolean

2 Byte

3 Short (16 bit)

4 Int (32 bit)

5 Long (64 bit)

6 BigInt (represented by java.math.BigInteger)

7 GroupElement (represented by org.bouncycastle.math.ec.ECPoint)

8 SigmaProp

9 reserved for Char

10 reserved

11 reserved

Table 6: Code Ranges of Data Types

Interval Constructor Description
0x01 - 0x0B(11) embeddable types (including 3 reserved)
0x0C(12) Coll[_] Collection of non-embeddable types (Coll[(Int,Boolean)])
0x0D(13) - 0x17(23) Coll[_] Collection of embeddable types (Coll[Byte], Coll[Int], etc.)
0x18(24) Coll[Coll[_]] Nested collection of non-embeddable types (Coll[Coll[(Int,Boolean)]])
0x19(25) - 0x23(35) Coll[Coll[_]] Nested collection of embeddable types (Coll[Coll[Byte]], Coll[Coll[Int]])
0x24(36) Option[_] Option of non-embeddable type (Option[(Int, Byte)])
0x25(37) - 0x2F(47) Option[_] Option of embeddable type (Option[Int])
0x30(48) Option[Coll[_]] Option of Coll of non-embeddable type (Option[Coll[(Int, Boolean)]])
0x31(49) - 0x3B(59) Option[Coll[_]] Option of Coll of embeddable type (Option[Coll[Int]])
0x3C(60) (_,_) Pair of non-embeddable types (((Int, Byte), (Boolean,Box)), etc.)
0x3D(61) - 0x47(71) (_, Int) Pair of types where first is embeddable ((_, Int))
0x48(72) (_,_,_) Triple of types
0x49(73) - 0x53(83) (Int, _) Pair of types where second is embeddable ((Int, _))
0x54(84) (_,_,_,_) Quadruple of types
0x55(85) - 0x5F(95) (_, _) Symmetric pair of embeddable types ((Int, Int), (Byte,Byte), etc.)
0x60(96) (_,...,_) Tuple type with more than 4 items (Int, Byte, Box, Boolean, Int)

0x61(97) Any Any type
0x62(98) Unit Unit type
0x63(99) Box Box type
0x64(100) AvlTree AvlTree type
0x65(101) Context Context type
0x66(102) reserved for String
0x67(103) reserved for TypeVar
0x68(104) Header Header type
0x69(105) PreHeader PreHeader type
0x6A(106) Global Global type
0x6B(107)-0x6E(110) reserved for future use
0x6F(111) Reserved for future Class type (e.g. user-defined types)

For each type constructor like Coll or Option we use the encoding schema defined below.
Type constructor has an associated base code which is multiple of 12 (e.g. 12 for Coll[_], 24 for
Coll[Coll[_]] etc.). The base code can be added to the embeddable type code to produce the
code of the constructed type, for example 12 + 1 = 13 is a code of Coll[Byte]. The code of type
constructor (e.g. 12 in this example) is used when type parameter is non-embeddable type (e.g.
Coll[(Byte, Int)]). In this case the code of type constructor is read first, and then recursive
descent is performed to read bytes of the parameter type (in this case (Byte, Int)). This encoding
allows very simple and fast decoding by using div and mod operations.

Following the above encoding schema the interval of codes for data types is divided as shown

11

in Table 6.

5.1.3 Encoding of Function Types

We use 12 different values for both domain and range types of functions. This gives us 12∗12 = 144
function types in total and allows to represent 11 ∗ 11 = 121 functions over primitive types using
just single byte.

Each code F in a range of the function types (i.e F ∈ {112, . . . , 255}) can be represented as
F = D∗12+R+112, where D,R ∈ {0, . . . , 11} - indices of domain and range types correspondingly,
112 - is the first code in an interval of function types.

If D = 0 then the domain type is not embeddable and the recursive descent is necessary to
write/read the domain type.

If R = 0 then the range type is not embeddable and the recursive descent is necessary to
write/read the range type.

5.1.4 Recursive Descent

When an argument of a type constructor is not a primitive type we fallback to the simple encoding
schema in which case we emit the separate code for the type constructor according to the table
above and descend recursively to every child node of the type tree.

We do this descend only for those children whose code cannot be embedded in the parent code.
For example, serialization of Coll[(Int,Boolean)] proceeds as the following:

1. Emit 0x0C because the elements type of the collection is not embeddable

2. Recursively serialize (Int, Boolean)

3. Emit 0x41(=0x3D+4) because the first type of the pair is embeddable and its code is 4

4. Recursivley serialize Boolean

5. Emit 0x02 - the code for embeddable type Boolean

More examples of type serialization are shown in Table 7

Table 7: Examples of type serialization

Type D R Serialized Bytes #Bytes Comments

Byte 2 1 simple embeddable type

Coll[Byte] 12 + 2 = 14 1 embeddable type in Coll

Coll[Coll[Byte]] 24 + 2 = 26 1 embeddable type in nested Coll

Option[Byte] 36 + 2 = 38 1 embeddable type in Option

Option[Coll[Byte]] 48 + 2 = 50 1 embeddable type in Coll nested in Option

(Int,Int) 84 + 4 = 88 1 symmetric pair of embeddable type

Int=>Boolean 4 1 161 = 4*12+1+112 1 embeddable domain and range

(Int,Int)=>Int 0 4 115=0*12+4+112, 88 2 embeddable range, then symmetric pair

(Int,Boolean) 60 + 4, 1 2 Int embedded in pair, then Boolean

(Int,Box)=>Boolean 0 1 0*12+1+112, 60+4, 99 3 func with embedded range, then Int em-
bedded, then Box

12

5.2 Data Serialization

In ErgoTree all runtime data values have an associated type also available at runtime (this is called
type reification[Rei]). However serialization format separates data values from its type descriptors.
This allows to save space when for example a collection of items is serialized.

It is done is such a way that the contents of a typed data structure can be fully described by a
type tree. For example having a typed data object d: (Int, Coll[Byte], Boolean) we can tell,
by examining the structure of the type, that d is a tuple with 3 items, the first item contain 32-bit
integer, the second - collection of bytes, and the third - logical true/false value.

To serialize/deserialize typed data we need to know its type descriptor (type tree). The data
serialization procedure is recursive over a type tree and the corresponding sub-components of the
data object. For primitive types (the leaves of the type tree) the format is fixed. The data values
of ErgoTree types are serialized according to the predefined recursive function shown in Figure 5
which uses the notation from Table 3.

Figure 5: Data serialization format

Slot Format #bytes Description

def serializeData(t, v)
match (t, v)
with (Unit, v ∈ JUnitK) // nothing serialized
with (Boolean, v ∈ JBooleanK)
v Byte 1 0 if v = false or 1 otherwise

with (Byte, v ∈ JByteK)
v Byte 1 in a single byte

with (N, v ∈ JNK), N ∈ Short, Int, Long
v VLQ(ZigZag(N)) [1..3] 16,32,64-bit signed integer encoded using ZigZag and then VLQ

with (BigInt, v ∈ JBigIntK)
bytes = v.toByteArray

numBytes VLQ(UInt) number of bytes in bytes array

bytes Bytes serialized bytes array

with (GroupElement, v ∈ JGroupElementK)
v GroupElement serialization of GroupElement data. See 5.2.1

with (SigmaProp, v ∈ JSigmaPropK)
v SigmaProp serialization of SigmaProp data. See 5.2.2

with (Box, v ∈ JBoxK)
v Box serialization of Box data. See ??

with (AvlTree, v ∈ JAvlTreeK)
v AvlTree serialization of AvlTree data. See 5.2.3

with (Coll[T], v ∈ JColl[T]K)
len VLQ(UShort) [1..3] length of the collection

match (T, v)
with (Boolean, v ∈ JColl[Boolean]K)
v Bits [1..1024] boolean values packed in bits

with (Byte, v ∈ JColl[Byte]K)
v Bytes [1..len] items of the collection

otherwise

for i = 1 to len do serializeData(T, vi) end for

end match

end match

end serializeData

13

5.2.1 GroupElement serialization

A value of the GroupElement type is represented in reference implementation using SecP256K1Point
class of the org.bouncycastle.math.ec.custom.sec package and serialized into ASN.1 encoding.
During deserialization the different encodings are taken into account including point compression
for Fp (see X9.62 sec. 4.2.1 pg. 17).

Figure 6: GroupElement serialization format

Slot Format #bytes Description

def serialize(ge)
if ge.isInfinity then

bytes rep(0, 33) 33 all bytes = 0

else

bytes Bytes 33 where bytes(0) 6= 0, see sigmastate.serialization.GroupElementSerializer

end if

end def

5.2.2 SigmaProp serialization

In reference implementation values of SigmaProp type are serialized using SigmaBoolean.serializer

Figure 7: SigmaProp serialization format

Slot Format #bytes Description

def serializeSigma(sp : SigmaTree)

sp.opCode Byte 1 opcode of SigmaTree node

match sp
with dl : ProveDlog

dl.value GroupElement 33 see 5.2.1

with dht : ProveDHTuple

dht.gv GroupElement 33 see 5.2.1

dht.hv GroupElement 33

dht.uv GroupElement 33

dht.vv GroupElement 33

with and : CAND

nChildren VLQ(UShort) 1..3 number of children

for i = 1 to nChildren do serializeSigma(and.children(i)) end for

with or : COR

nChildren VLQ(UShort) 1..3 number of children

for i = 1 to nChildren do serializeSigma(or.children(i)) end for

with th : CTHRESHOLD

th.k VLQ(UShort) 1..3 k out of n

nChildren VLQ(UShort) 1..3 number of children

for i = 1 to nChildren do serializeSigma(th.children(i)) end for

with : TrivialProp // besides opCode no additional bytes

end match

end def

5.2.3 AvlTree serialization

In reference implementation values of AvlTree type are serialized using AvlTreeData.serializer.

14

Figure 8: AvlTree serialization format

Slot Format #bytes Description

digest Bytes DigestSize authenticated tree digest: root hash along with tree height

treeF lags UByte 1 allowed modifications of the tree. The operation is allowed when
bit is set to 1. bit0 - insert, bit1 - update, bit2 - remove

keyLength VLQ(UInt) [1..5] the length of each key in the tree

optional valueLength

tag Byte 1 0 - no value; 1 - has value

when tag == 1

valueLength VLQ(UInt) [1, *] the length of all the values in the tree

end optional

5.3 Constant Serialization

Constant format is simple and self sufficient to represent any data value. Serialized bytes of the
Constant format contain both the type bytes and the data bytes, thus it can be stored or wire
transfered and then later unambiguously interpreted. The format is shown in Figure 9

Figure 9: Constant serialization format

Slot Format #bytes Description

type Type [1..Tmax] type of the data instance (see 5.1)

value Data [1..Dmax] serialized data instance (see 5.2)

In order to parse the Constant format first use type serializer form section 5.1 and read the
type. Then use the parsed type as an argument of data serializer given in section 5.2.

5.4 Expression Serialization

Expressions of ErgoTree are serialized as tree data structure using recursive procedure described
in Figure 10. Expression nodes are represented in the reference implementation using Value class.

Figure 10: Expr serialization format

Slot Format #bytes Description

def serializeExpr(e)

e.opCode Byte 1 opcode of ErgoTree node, used for selection of an appropriate node
serializer from Appendix C

if opCode <= LastConstantCode then

c Constant [1..Cmax] Constant serializaton according to 5.3

else

body Op [1..Exprmax] serialization of the operation depending on e.opCode as defined in Ap-
pendix C

end if

end serializeExpr

5.5 ErgoTree serialization

The ErgoTree propostions stored in UTXO boxes are represented in the reference implementation
using ErgoTree class. The class is serialized using the ErgoTree serialization format shown in
Figure 11.

15

Figure 11: ErgoTree serialization format

Slot Format #bytes Description

header VLQ(UInt) [1, *] the first bytes of serialized byte array which determines interpretation
of the rest of the array

if header[3] = 1 then

size VLQ(UInt) [1, *] size of the constants and root, i.e. the number of bytes after header
and size

end for

numConstants VLQ(UInt) [1, *] size of constants array

for i = 0 to numConstants− 1

consti Const [1, *] constant in i-th position

end for

root Expr [1, *] If header[4] = 1, the root tree may contain ConstantPlaceholder nodes
instead of Constant nodes (and may by only some of them, not all).
Otherwise (i.e. if header[4] = 0) the root cannot contain placeholders
(exception should be thrown). It is possible to have both constants
and placeholders in the tree, but for every placeholder there should be
a constant in constants array of ErgoTree instance.

Serialized instances of ErgoTree class are self sufficient and can be stored and passed around.
ErgoTree format defines top-level serialization format of ErgoTree scripts. The interpretation of
the byte array depend on the first header bytes, which uses VLQ encoding up to 30 bits. Currently
we define meaning for only first byte, which may be extended in future versions. The meaning of
the bits is shown in Figure 12.

Figure 12: ErgoTree header bits

Bits Default Description

Bits 0-2 0 language version (current version == 0)

Bit 3 0 = 1 if size of the whole tree is serialized after the header byte

Bit 4 0 = 1 if constant segregation is used for this ErgoTree

Bit 5 0 = 1 - reserved for context dependent costing (should be = 0)

Bit 6 0 reserved for GZIP compression (should be 0)

Bit 7 0 = 1 if the header contains more than 1 byte (should be 0)

Currently we don’t specify interpretation for the second and other bytes of the header. We
reserve the possibility to extend header by using Bit 7 == 1 and chain additional bytes as in VLQ.
Once the new bytes are required, a new version of the language should be created and implemented
via soft-forkability. That new language will give an interpretation for the new bytes.

The default behavior of ErgoTreeSerializer is to preserve original structure of ErgoTree and
check consistency. In case of any inconsistency the serializer throws exception.

If constant segregation Bit4 is set to 1 then constants collection contains the constants for
which there may be ConstantPlaceholder nodes in the tree. Nowever, if the constant segregation
bit is 0, then constants collection should be empty and any placeholder in the tree will lead to
exception.

16

6 Compliant Implementation

17

References

[CKM18] Alexander Chepurnoy, Vasily Kharin, and Dmitry Meshkov. Self-reproducing coins as
universal turing machine, 2018. https://arxiv.org/abs/1806.10116.

[Fow10] Martin Fowler. Domain-Specific Languages. 01 2010.

[Hud96] Paul Hudak. Building domain-specific embedded languages. ACM Comput. Surv.,
28(4es):196–es, December 1996.

[Ler17] Sergio Lerner. A bitcoin transaction that takes 5 hours
to verify, 2017. https://bitslog.wordpress.com/2017/01/08/

a-bitcoin-transaction-that-takes-5-hours-to-verify/.

[Rei] Reification. https://en.wikipedia.org/wiki/Reification_(computer_science).

[Ubi] Ubiquitous language. https://www.martinfowler.com/bliki/UbiquitousLanguage.

html.

[VLQa] Variable-length quantity. https://en.wikipedia.org/wiki/Variable-length_

quantity.

[VLQb] Variable-length quantity. https://rosettacode.org/wiki/Variable-length_

quantity.

[Woo14] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. Available
at http://gavwood.com/Paper.pdf, 2014.

[WTF] The most wtf-y programming languages. https://www.itworld.com/article/

2833252/the-most-wtf-y-programming-languages.html.

18

https://arxiv.org/abs/1806.10116
https://bitslog.wordpress.com/2017/01/08/a-bitcoin-transaction-that-takes-5-hours-to-verify/
https://bitslog.wordpress.com/2017/01/08/a-bitcoin-transaction-that-takes-5-hours-to-verify/
https://en.wikipedia.org/wiki/Reification_(computer_science)
https://www.martinfowler.com/bliki/UbiquitousLanguage.html
https://www.martinfowler.com/bliki/UbiquitousLanguage.html
https://en.wikipedia.org/wiki/Variable-length_quantity
https://en.wikipedia.org/wiki/Variable-length_quantity
https://rosettacode.org/wiki/Variable-length_quantity
https://rosettacode.org/wiki/Variable-length_quantity
http://gavwood.com/Paper.pdf
https://www.itworld.com/article/2833252/the-most-wtf-y-programming-languages.html
https://www.itworld.com/article/2833252/the-most-wtf-y-programming-languages.html

A Predefined types

Name Code IsConstSize isPrim2 isEmbed isNum Set of values
Boolean 1 true true true false {true, false}
Byte 2 true true true true {−27 . . . 27 − 1} A.1
Short 3 true true true true {−215 . . . 215 − 1} A.2
Int 4 true true true true {−231 . . . 231 − 1} A.3
Long 5 true true true true {−263 . . . 263 − 1} A.4
BigInt 6 true true true true {−2255 . . . 2255 − 1} A.5
GroupElement 7 true true true false {p ∈ SecP256K1Point}
SigmaProp 8 true true true false Sec. A.7
Box 99 false false false false Sec. A.8
AvlTree 100 true false false false Sec. A.9
Context 101 false false false false Sec. A.12
Header 104 true false false false Sec. A.10
PreHeader 105 true false false false Sec. A.11
Global 106 true false false false Sec. A.13

Table 8: Predefined types of ErgoTree

There is a section for each type with sub-sections for all available methods. Each method is
characterized by the description, signature (i.e. name, parameters and return type), description of
all parameters and reference to the serialization format.

There is universal primitive which can represent any method invocation (MethodCall). How-
ever, many method are also mapped to the special primitive operations to save storage space.

The following sub-sections are auto-generated from type descriptors of ErgoTree reference im-
plementation.

A.1 Byte type

A.1.1 Byte.toByte method (Code 106.1)

Description Converts this numeric value to Byte, throwing exception if overflow.

Signature def toByte: Byte

Serialized as Downcast

A.1.2 Byte.toShort method (Code 106.2)

Description Converts this numeric value to Short, throwing exception if overflow.

Signature def toShort: Short

Serialized as Upcast

A.1.3 Byte.toInt method (Code 106.3)

Description Converts this numeric value to Int, throwing exception if overflow.

Signature def toInt: Int

Serialized as Upcast

19

A.1.4 Byte.toLong method (Code 106.4)

Description Converts this numeric value to Long, throwing exception if overflow.

Signature def toLong: Long

Serialized as Upcast

A.1.5 Byte.toBigInt method (Code 106.5)

Description Converts this numeric value to BigInt

Signature def toBigInt: BigInt

Serialized as Upcast

A.2 Short type

A.2.1 Short.toByte method (Code 106.1)

Description Converts this numeric value to Byte, throwing exception if overflow.

Signature def toByte: Byte

Serialized as Downcast

A.2.2 Short.toShort method (Code 106.2)

Description Converts this numeric value to Short, throwing exception if overflow.

Signature def toShort: Short

Serialized as Downcast

A.2.3 Short.toInt method (Code 106.3)

Description Converts this numeric value to Int, throwing exception if overflow.

Signature def toInt: Int

Serialized as Upcast

A.2.4 Short.toLong method (Code 106.4)

Description Converts this numeric value to Long, throwing exception if overflow.

Signature def toLong: Long

Serialized as Upcast

A.2.5 Short.toBigInt method (Code 106.5)

Description Converts this numeric value to BigInt

Signature def toBigInt: BigInt

Serialized as Upcast

20

A.3 Int type

A.3.1 Int.toByte method (Code 106.1)

Description Converts this numeric value to Byte, throwing exception if overflow.

Signature def toByte: Byte

Serialized as Downcast

A.3.2 Int.toShort method (Code 106.2)

Description Converts this numeric value to Short, throwing exception if overflow.

Signature def toShort: Short

Serialized as Downcast

A.3.3 Int.toInt method (Code 106.3)

Description Converts this numeric value to Int, throwing exception if overflow.

Signature def toInt: Int

Serialized as Downcast

A.3.4 Int.toLong method (Code 106.4)

Description Converts this numeric value to Long, throwing exception if overflow.

Signature def toLong: Long

Serialized as Upcast

A.3.5 Int.toBigInt method (Code 106.5)

Description Converts this numeric value to BigInt

Signature def toBigInt: BigInt

Serialized as Upcast

A.4 Long type

A.4.1 Long.toByte method (Code 106.1)

Description Converts this numeric value to Byte, throwing exception if overflow.

Signature def toByte: Byte

Serialized as Downcast

A.4.2 Long.toShort method (Code 106.2)

Description Converts this numeric value to Short, throwing exception if overflow.

Signature def toShort: Short

Serialized as Downcast

21

A.4.3 Long.toInt method (Code 106.3)

Description Converts this numeric value to Int, throwing exception if overflow.

Signature def toInt: Int

Serialized as Downcast

A.4.4 Long.toLong method (Code 106.4)

Description Converts this numeric value to Long, throwing exception if overflow.

Signature def toLong: Long

Serialized as Downcast

A.4.5 Long.toBigInt method (Code 106.5)

Description Converts this numeric value to BigInt

Signature def toBigInt: BigInt

Serialized as Upcast

A.5 BigInt type

A.5.1 BigInt.toBigInt method (Code 106.5)

Description Converts this numeric value to BigInt

Signature def toBigInt: BigInt

Serialized as Downcast

A.6 GroupElement type

A.6.1 GroupElement.getEncoded method (Code 7.2)

Description Get an encoding of the point value.

Signature def getEncoded: Coll[Byte]

Serialized as PropertyCall

A.6.2 GroupElement.exp method (Code 7.3)

Description Exponentiate this GroupElement to the given number. Returns this to the
power of k

Signature def exp(k: BigInt): GroupElement

Parameters k The power

Serialized as Exponentiate

A.6.3 GroupElement.multiply method (Code 7.4)

Description Group operation.

Signature def multiply(other: GroupElement): GroupElement

Parameters other other element of the group

Serialized as MultiplyGroup

22

A.6.4 GroupElement.negate method (Code 7.5)

Description Inverse element of the group.

Signature def negate: GroupElement

Serialized as PropertyCall

A.7 SigmaProp type

Values of SigmaProp type hold sigma propositions, which can be proved and verified using Sigma
protocols. Each sigma proposition is represented as an expression where sigma protocol primitives
such as ProveDlog, and ProveDHTuple are used as constants and special sigma protocol connectives
like &&,|| and THRESHOLD are used as operations.

The abstract syntax of sigma propositions is shown in Figure 13.

Figure 13: Abstract syntax of sigma propositions

Set Syntax Mnemonic Description

Tree 3 t := Trivial(b) TrivialProp boolean value b as sigma proposition
| Dlog(ge) ProveDLog knowledge of discrete logarithm of ge
| DHTuple(g,h,u,v) ProveDHTuple knowledge of Diffie-Hellman tuple
| THRESHOLD(k, t1, . . . , tn) CTHRESHOLD knowledge of k out of n secrets
| OR(t1, . . . , tn) COR knowledge of any one of n secrets
| AND(t1, . . . , tn) CAND knowledge of all n secrets

Every well-formed tree of sigma proposition is a value of type SigmaProp, thus following the
notation of Section 4 we can define a denotation of the SigmaProp type (i.e. a set of possible values)

JSigmaPropK = {t ∈ Tree}

The following methods can be called on all instances of SigmaProp type.

A.7.1 SigmaProp.propBytes method (Code 8.1)

Description Serialized bytes of this sigma proposition taken as ErgoTree.

Signature def propBytes: Coll[Byte]

Serialized as SigmaPropBytes

Additionally, for a list of primitive operations on SigmaProp type see Appendix B.

A.8 Box type

A.8.1 Box.value method (Code 99.1)

Description Monetary value in NanoERGs stored in this box.

Signature def value: Long

Serialized as ExtractAmount

23

A.8.2 Box.propositionBytes method (Code 99.2)

Description Serialized bytes of the guarding script which should be evaluated to true in
order to open this box (spend it in a transaction).

Signature def propositionBytes: Coll[Byte]

Serialized as ExtractScriptBytes

A.8.3 Box.bytes method (Code 99.3)

Description Serialized bytes of this box’s content, including proposition bytes.

Signature def bytes: Coll[Byte]

Serialized as ExtractBytes

A.8.4 Box.bytesWithoutRef method (Code 99.4)

Description Serialized bytes of this box’s content, excluding transactionId and index of
output.

Signature def bytesWithoutRef: Coll[Byte]

Serialized as ExtractBytesWithNoRef

A.8.5 Box.id method (Code 99.5)

Description Blake2b256 hash of this box’s content, basically equals to blake2b256(bytes)

Signature def id: Coll[Byte]

Serialized as ExtractId

A.8.6 Box.creationInfo method (Code 99.6)

Description If tx is a transaction which generated this box, then creationInfo._1 is a
height of the tx’s block. The creationInfo._2 is a serialized bytes of the
transaction identifier followed by the serialized bytes of the box index in the
transaction outputs.

Signature def creationInfo: (Int,Coll[Byte])

Serialized as ExtractCreationInfo

A.8.7 Box.tokens method (Code 99.8)

Description Secondary tokens

Signature def tokens: Coll[(Coll[Byte],Long)]

Serialized as PropertyCall

A.8.8 Box.R4 method (Code 99.13)

Description Non-mandatory register

Signature def R4[T]: Option[T]

Serialized as ExtractRegisterAs

24

A.8.9 Box.R5 method (Code 99.14)

Description Non-mandatory register

Signature def R5[T]: Option[T]

Serialized as ExtractRegisterAs

A.8.10 Box.R6 method (Code 99.15)

Description Non-mandatory register

Signature def R6[T]: Option[T]

Serialized as ExtractRegisterAs

A.8.11 Box.R7 method (Code 99.16)

Description Non-mandatory register

Signature def R7[T]: Option[T]

Serialized as ExtractRegisterAs

A.8.12 Box.R8 method (Code 99.17)

Description Non-mandatory register

Signature def R8[T]: Option[T]

Serialized as ExtractRegisterAs

A.8.13 Box.R9 method (Code 99.18)

Description Non-mandatory register

Signature def R9[T]: Option[T]

Serialized as ExtractRegisterAs

A.9 AvlTree type

A.9.1 AvlTree.digest method (Code 100.1)

Description Returns digest of the state represented by this tree. Authenticated tree digest

= root hash bytes ++ tree height

Signature def digest: Coll[Byte]

Serialized as PropertyCall

A.9.2 AvlTree.enabledOperations method (Code 100.2)

Description Flags of enabled operations packed in single byte.
isInsertAllowed == (enabledOperations & 0x01) != 0

isUpdateAllowed == (enabledOperations & 0x02) != 0

isRemoveAllowed == (enabledOperations & 0x04) != 0

Signature def enabledOperations: Byte

Serialized as PropertyCall

25

A.9.3 AvlTree.keyLength method (Code 100.3)

Description All the elements under the tree have the same given length of the keys.

Signature def keyLength: Int

Serialized as PropertyCall

A.9.4 AvlTree.valueLengthOpt method (Code 100.4)

Description If non-empty, all the values under the tree are of the same given length.

Signature def valueLengthOpt: Option[Int]

Serialized as PropertyCall

A.9.5 AvlTree.isInsertAllowed method (Code 100.5)

Description Checks if Insert operation is allowed for this tree instance.

Signature def isInsertAllowed: Boolean

Serialized as PropertyCall

A.9.6 AvlTree.isUpdateAllowed method (Code 100.6)

Description Checks if Update operation is allowed for this tree instance.

Signature def isUpdateAllowed: Boolean

Serialized as PropertyCall

A.9.7 AvlTree.isRemoveAllowed method (Code 100.7)

Description Checks if Remove operation is allowed for this tree instance.

Signature def isRemoveAllowed: Boolean

Serialized as PropertyCall

A.9.8 AvlTree.updateOperations method (Code 100.8)

Description Enable/disable operations of this tree producing a new tree. Since AvlTree

is immutable, this tree instance remains unchanged. Returns a copy of this
AvlTree instance where this.enabledOperations replaced by newOperations.

Signature def updateOperations(newOperations: Byte): AvlTree

Parameters newOperations a new flags which specify available operations on a new tree

Serialized as MethodCall

26

A.9.9 AvlTree.contains method (Code 100.9)

Description Checks if an entry with key key exists in this tree using proof proof.
NOTE, does not support multiple keys check, use getMany instead. Returns
true if a leaf with the key key exists. Returns false if leaf with provided key
does not exist.

Signature def contains(key: Coll[Byte], proof: Coll[Byte]): Boolean

Parameters
key a key of an element of this authenticated dictionary
proof proof that they tree with this.digest contains the given key

Serialized as MethodCall

A.9.10 AvlTree.get method (Code 100.10)

Description Perform a lookup of key key in this tree using proof. Throws exception if proof
is incorrect.
NOTE, does not support multiple keys check, use getMany instead. Return
Some(bytes) of leaf with key key if it exists Return None if leaf with provided
key does not exist.

Signature def get(key: Coll[Byte], proof: Coll[Byte]): Option[Coll[Byte]]

Parameters
key a key of an element of this authenticated dictionary
proof proof that they tree with this.digest contains the given key

Serialized as MethodCall

A.9.11 AvlTree.getMany method (Code 100.11)

Description Perform a lookup of many keys keys in this tree using proof proof.
NOTE, keys must be ordered the same way they were in lookup before proof
was generated. For each key return Some(bytes) of leaf if it exists and None if
is doesn’t.

Signature def getMany(keys: Coll[Coll[Byte]], proof: Coll[Byte]): Coll[Option[Coll[Byte]]]

Parameters
keys keys of elements of this authenticated dictionary
proof proof that they tree with this.digest contains the given key

Serialized as MethodCall

A.9.12 AvlTree.insert method (Code 100.12)

Description Perform insertions of key-value entries into this authenticated dictionary using
proof proof. Throws exception if proof is incorrect.
NOTE, pairs must be ordered the same way they were in insert ops before
proof was generated. Returns Some(newTree) if successful. Returns None if
operations were not performed.

Signature def insert(operations: Coll[(Coll[Byte],Coll[Byte])], proof: Coll[Byte]):
Option[AvlTree]

Parameters
operations a collection of key-value pairs inserted in this dictionary
proof a proof that the key-value pairs were inserted

Serialized as MethodCall

27

A.9.13 AvlTree.update method (Code 100.13)

Description Perform updates of key-value entries into this authenticated dictionary using
proof proof. Throws exception if proof is incorrect.
Note, pairs must be ordered the same way they were in update ops before
proof was generated. Returns Some(newTree) if successful. Returns None if
operations were not performed.

Signature def update(operations: Coll[(Coll[Byte],Coll[Byte])], proof: Coll[Byte]):
Option[AvlTree]

Parameters
operations a collection of key-value pairs updated in this dictionary
proof a proof that the key-value pairs were updated

Serialized as MethodCall

A.9.14 AvlTree.remove method (Code 100.14)

Description Perform removal of entries into this authenticated dictionary using proof.
Throws exception if the proof is incorrect. Returns Some(newTree) if suc-
cessful. Returns None if operations were not performed. NOTE, keys must be
ordered the same way they were in remove ops before proof was generated.

Signature def remove(operations: Coll[Coll[Byte]], proof: Coll[Byte]): Option[AvlTree]

Parameters
operations a collection of key-value pairs removed from this dictionary
proof a proof that the key-value pairs were removed

Serialized as MethodCall

A.9.15 AvlTree.updateDigest method (Code 100.15)

Description Replace digest of this tree producing a new tree. Since AvlTree is immutable,
this tree instance remains unchanged. Returns a copy of this AvlTree instance
where this.digest replaced by newDigest.

Signature def updateDigest(newDigest: Coll[Byte]): AvlTree

Parameters newDigest a new digest

Serialized as MethodCall

A.10 Header type

A.10.1 Header.id method (Code 104.1)

Description Bytes representation of ModifierId of this Header

Signature def id: Coll[Byte]

Serialized as PropertyCall

A.10.2 Header.version method (Code 104.2)

Description Block version, to be increased on every soft and hard-fork.

Signature def version: Byte

Serialized as PropertyCall

28

A.10.3 Header.parentId method (Code 104.3)

Description Bytes representation of ModifierId of the parent block

Signature def parentId: Coll[Byte]

Serialized as PropertyCall

A.10.4 Header.ADProofsRoot method (Code 104.4)

Description Hash of ADProofs for transactions in a block

Signature def ADProofsRoot: Coll[Byte]

Serialized as PropertyCall

A.10.5 Header.stateRoot method (Code 104.5)

Description AvlTree of a state after block application

Signature def stateRoot: AvlTree

Serialized as PropertyCall

A.10.6 Header.transactionsRoot method (Code 104.6)

Description Root hash (for a Merkle tree) of transactions in a block.

Signature def transactionsRoot: Coll[Byte]

Serialized as PropertyCall

A.10.7 Header.timestamp method (Code 104.7)

Description Block timestamp (in milliseconds since beginning of Unix Epoch)

Signature def timestamp: Long

Serialized as PropertyCall

A.10.8 Header.nBits method (Code 104.8)

Description Current difficulty in a compressed view. NOTE: actually it is unsigned Int.

Signature def nBits: Long

Serialized as PropertyCall

A.10.9 Header.height method (Code 104.9)

Description Block height

Signature def height: Int

Serialized as PropertyCall

A.10.10 Header.extensionRoot method (Code 104.10)

Description Root hash of extension section

Signature def extensionRoot: Coll[Byte]

Serialized as PropertyCall

29

A.10.11 Header.minerPk method (Code 104.11)

Description Miner public key. Should be used to collect block rewards. Part of Autolykos
solution.

Signature def minerPk: GroupElement

Serialized as PropertyCall

A.10.12 Header.powOnetimePk method (Code 104.12)

Description One-time public key. Prevents revealing of miners secret.

Signature def powOnetimePk: GroupElement

Serialized as PropertyCall

A.10.13 Header.powNonce method (Code 104.13)

Description The nonce value generated during mining.

Signature def powNonce: Coll[Byte]

Serialized as PropertyCall

A.10.14 Header.powDistance method (Code 104.14)

Description Distance between pseudo-random number, corresponding to nonce powNonce

and a secret, corresponding to minerPk. The lower powDistance is, the harder
it was to find this solution.

Signature def powDistance: BigInt

Serialized as PropertyCall

A.10.15 Header.votes method (Code 104.15)

Description A collection of votes set up by the block miner.

Signature def votes: Coll[Byte]

Serialized as PropertyCall

A.11 PreHeader type

A.11.1 PreHeader.version method (Code 105.1)

Description Block version, to be increased on every soft and hard-fork.

Signature def version: Byte

Serialized as PropertyCall

A.11.2 PreHeader.parentId method (Code 105.2)

Description Id of parent block

Signature def parentId: Coll[Byte]

Serialized as PropertyCall

30

A.11.3 PreHeader.timestamp method (Code 105.3)

Description Block timestamp (in milliseconds since beginning of Unix Epoch)

Signature def timestamp: Long

Serialized as PropertyCall

A.11.4 PreHeader.nBits method (Code 105.4)

Description Current difficulty in a compressed view. NOTE: actually it is unsigned Int.

Signature def nBits: Long

Serialized as PropertyCall

A.11.5 PreHeader.height method (Code 105.5)

Description Block height

Signature def height: Int

Serialized as PropertyCall

A.11.6 PreHeader.minerPk method (Code 105.6)

Description Miner public key. Should be used to collect block rewards.

Signature def minerPk: GroupElement

Serialized as PropertyCall

A.11.7 PreHeader.votes method (Code 105.7)

Description A collection of votes set up by the block miner.

Signature def votes: Coll[Byte]

Serialized as PropertyCall

A.12 Context type

A.12.1 Context.dataInputs method (Code 101.1)

Description A collection of inputs of the current transaction that will not be spent.

Signature def dataInputs: Coll[Box]

Serialized as PropertyCall

A.12.2 Context.headers method (Code 101.2)

Description A fixed number of last block headers in descending order (first header is the
newest one)

Signature def headers: Coll[Header]

Serialized as PropertyCall

31

A.12.3 Context.preHeader method (Code 101.3)

Description Only header fields that can be predicted by a miner when the spending trans-
action is added to a new block candidate.

Signature def preHeader: PreHeader

Serialized as PropertyCall

A.12.4 Context.INPUTS method (Code 101.4)

Description A collection of inputs of the current transaction, where the SELF box is one of
the inputs.

Signature def INPUTS: Coll[Box]

Serialized as Inputs

A.12.5 Context.OUTPUTS method (Code 101.5)

Description A collection of outputs of the current transaction.

Signature def OUTPUTS: Coll[Box]

Serialized as Outputs

A.12.6 Context.HEIGHT method (Code 101.6)

Description Height (block number) of the block which is currently being validated.

Signature def HEIGHT: Int

Serialized as Height

A.12.7 Context.SELF method (Code 101.7)

Description Box whose proposition is being currently executing

Signature def SELF: Box

Serialized as Self

A.12.8 Context.LastBlockUtxoRootHash method (Code 101.9)

Description Authenticated dynamic dictionary digest representing Utxo state before current
state.

Signature def LastBlockUtxoRootHash: AvlTree

Serialized as LastBlockUtxoRootHash

A.12.9 Context.minerPubKey method (Code 101.10)

Description Encoded bytes of public key of the miner who created the block. Equals to
preHeader.minerPk.getEncoded

Signature def minerPubKey: Coll[Byte]

Serialized as MinerPubkey

32

A.12.10 Context.getVar method (Code 101.11)

Description Get context variable with given varId and type. Example:
getVar[Coll[Byte]](10).get extract a collection of bytes from the variable
with varId = 10.

Signature def getVar[T](varId: Byte): Option[T]

Parameters varId Byte identifier of context variable

Serialized as GetVar

A.13 Global type

A.13.1 SigmaDslBuilder.groupGenerator method (Code 106.1)

Description The generator g of the group is an element of the group such that, when writ-
ten multiplicatively, every element of the group is a power of g. Returns the
generator of the SecP256K1 group.

Signature def groupGenerator: GroupElement

Serialized as GroupGenerator

A.13.2 SigmaDslBuilder.xor method (Code 106.2)

Description Byte-wise XOR of two collections of bytes

Signature def xor(left: Coll[Byte], right: Coll[Byte]): Coll[Byte]

Parameters
left left operand
right right operand

Serialized as Xor

A.14 Coll type

A.14.1 SCollection.size method (Code 12.1)

Description The size of the collection in elements.

Signature def size: Int

Serialized as SizeOf

A.14.2 SCollection.getOrElse method (Code 12.2)

Description Return the element of collection if index is in range 0 .. size-1

Signature def getOrElse(index: Int, default: IV): IV

Parameters
index index of the element of this collection
default value to return when index is out of range

Serialized as ByIndex

33

A.14.3 SCollection.map method (Code 12.3)

Description Builds a new collection by applying a function to all elements of this collection.
Returns a new collection of type Coll[B] resulting from applying the given
function f to each element of this collection and collecting the results.

Signature def map[OV](f: (IV) => OV): Coll[OV]

Parameters f the function to apply to each element

Serialized as MapCollection

A.14.4 SCollection.exists method (Code 12.4)

Description Tests whether a predicate holds for at least one element of this collection. Re-
turns true if the given predicate p is satisfied by at least one element of this
collection, otherwise false

Signature def exists(p: (IV) => Boolean): Boolean

Parameters p the predicate used to test elements

Serialized as Exists

A.14.5 SCollection.fold method (Code 12.5)

Description Applies a binary operator to a start value and all elements of this collection,
going left to right.

Signature def fold[OV](zero: OV, op: (OV,IV) => OV): OV

Parameters
zero a starting value
op the binary operator

Serialized as Fold

A.14.6 SCollection.forall method (Code 12.6)

Description Tests whether a predicate holds for all elements of this collection. Returns true
if this collection is empty or the given predicate p holds for all elements of this
collection, otherwise false.

Signature def forall(p: (IV) => Boolean): Boolean

Parameters p the predicate used to test elements

Serialized as ForAll

A.14.7 SCollection.slice method (Code 12.7)

Description Selects an interval of elements. The returned collection is made up of all ele-
ments x which satisfy the invariant: from <= indexOf(x) < until

Signature def slice(from: Int, until: Int): Coll[IV]

Parameters
from the lowest index to include from this collection
until the lowest index to EXCLUDE from this collection

Serialized as Slice

34

A.14.8 SCollection.filter method (Code 12.8)

Description Selects all elements of this collection which satisfy a predicate. Returns a new
collection consisting of all elements of this collection that satisfy the given pred-
icate p. The order of the elements is preserved.

Signature def filter(p: (IV) => Boolean): Coll[IV]

Parameters p the predicate used to test elements.

Serialized as Filter

A.14.9 SCollection.append method (Code 12.9)

Description Puts the elements of other collection after the elements of this collection (con-
catenation of 2 collections)

Signature def append(other: Coll[IV]): Coll[IV]

Parameters other the collection to append at the end of this

Serialized as Append

A.14.10 SCollection.apply method (Code 12.10)

Description The element at given index. Indices start at 0; xs.apply(0) is the first el-
ement of collection xs. Note the indexing syntax xs(i) is a shorthand for
xs.apply(i). Returns the element at the given index. Throws an exception if
i < 0 or length <= i

Signature def apply(i: Int): IV

Parameters i the index

Serialized as ByIndex

A.14.11 SCollection.indices method (Code 12.14)

Description Produces the range of all indices of this collection as a new collection containing
[0 .. length-1] values.

Signature def indices: Coll[Int]

Serialized as PropertyCall

A.14.12 SCollection.flatMap method (Code 12.15)

Description Builds a new collection by applying a function to all elements of this collection
and using the elements of the resulting collections. Function f is constrained
to be of the form x => x.someProperty, otherwise it is illegal. Returns a new
collection of type Coll[B] resulting from applying the given collection-valued
function f to each element of this collection and concatenating the results.

Signature def flatMap[OV](f: (IV) => Coll[OV]): Coll[OV]

Parameters f the function to apply to each element.

Serialized as MethodCall

35

A.14.13 SCollection.patch method (Code 12.19)

Description Produces a new collection where a slice of elements in this collection is replaced
by another collection. Returns a new collection consisting of all elements of this
collection except that replaced elements starting from from are replaced by
patch.

Signature def patch(from: Int, patch: Coll[IV], replaced: Int): Coll[IV]

Parameters
from the index of the first replaced element
patch the replacement sequence
replaced the number of elements to drop in the original collection

Serialized as MethodCall

A.14.14 SCollection.updated method (Code 12.20)

Description A copy of this collection with one single replaced element. Returns a new col-
lection which is a copy of this collection with the element at position index

replaced by elem. Throws IndexOutOfBoundsException if index does not sat-
isfy 0 <= index < length.

Signature def updated(index: Int, elem: IV): Coll[IV]

Parameters
index the position of the replacement
elem the replacing element

Serialized as MethodCall

A.14.15 SCollection.updateMany method (Code 12.21)

Description Returns a copy of this collection where elements at indexes are replaced with
values.

Signature def updateMany(indexes: Coll[Int], values: Coll[IV]): Coll[IV]

Parameters
indexes the positions of the replacement
values the values to be put in the corresponding position

Serialized as MethodCall

A.14.16 SCollection.indexOf method (Code 12.26)

Description Finds index of first occurrence of some value in this collection after or at some
start index. Returns an index >= from of the first element of this collection
that is equal (as determined by ==) to elem, or -1, if none exists.

Signature def indexOf(elem: IV, from: Int): Int

Parameters
elem the element value to search for
from the start index

Serialized as MethodCall

36

A.14.17 SCollection.zip method (Code 12.29)

Description For this collection (x0, . . . , xN) and other collection (y0, . . . , yM) produces a
collection ((x0, y0), . . . , (xK , yK)) where K = min(N,M).

Signature def zip[OV](ys: Coll[OV]): Coll[(IV,OV)]

Parameters ys other collection

Serialized as MethodCall

A.15 Option type

A.15.1 SOption.isDefined method (Code 36.2)

Description Returns true if the option is an instance of Some, false otherwise.

Signature def isDefined: Boolean

Serialized as OptionIsDefined

A.15.2 SOption.get method (Code 36.3)

Description Returns the option’s value. The option must be nonempty. Throws exception
if the option is empty.

Signature def get: T

Serialized as OptionGet

A.15.3 SOption.getOrElse method (Code 36.4)

Description Returns the option’s value if the option is nonempty, otherwise returns default.

Signature def getOrElse(default: T): T

Parameters default the default value

Serialized as OptionGetOrElse

A.15.4 SOption.map method (Code 36.7)

Description Returns a Some containing the result of applying f to this option’s value if this
option is nonempty. Otherwise return None.

Signature def map[R](f: (T) => R): Option[R]

Parameters f the function to apply

Serialized as MethodCall

A.15.5 SOption.filter method (Code 36.8)

Description Returns this option if it is nonempty and applying the predicate p to this
option’s value returns true. Otherwise, return None.

Signature def filter(p: (T) => Boolean): Option[T]

Parameters p the predicate used for testing

Serialized as MethodCall

37

B Predefined global functions

Note, the following table and sub-sections are autogenerated from sigma operation descriptors. See
SigmaPredef.scala

Code Mnemonic Description
116 SubstConstants See B.0.1
122 LongToByteArray Converts Long value to big-endian bytes representation. See B.0.2
123 ByteArrayToBigInt Convert big-endian bytes representation (Coll[Byte]) to BigInt value. See B.0.3
124 ByteArrayToLong Convert big-endian bytes representation (Coll[Byte]) to Long value. See B.0.4
125 Downcast Cast this numeric value to a smaller type (e.g. Long to Int). Throws exception if overflow.

See B.0.5
126 Upcast Cast this numeric value to a bigger type (e.g. Int to Long) See B.0.6
140 SelectField Select tuple field by its 1-based index. E.g. input._1 is transformed to

SelectField(input, 1) See B.0.7
143 LT Returns true is the left operand is less then the right operand, false otherwise. See B.0.8
144 LE Returns true is the left operand is less then or equal to the right operand, false otherwise.

See B.0.9
145 GT Returns true is the left operand is greater then the right operand, false otherwise.

See B.0.10
146 GE Returns true is the left operand is greater then or equal to the right operand, false

otherwise. See B.0.11
147 EQ Compare equality of left and right arguments See B.0.12
148 NEQ Compare inequality of left and right arguments See B.0.13
149 If Compute condition, if true then compute trueBranch else compute falseBranch See B.0.14
150 AND Returns true if all the elements in collection are true. See B.0.15
151 OR Returns true if any the elements in collection are true. See B.0.16
152 AtLeast See B.0.17
153 Minus Returns a result of subtracting second numeric operand from the first. See B.0.18
154 Plus Returns a sum of two numeric operands See B.0.19
155 Xor Byte-wise XOR of two collections of bytes. Example: xs | ys. See B.0.20
156 Multiply Returns a multiplication of two numeric operands See B.0.21
157 Division Integer division of the first operand by the second operand. See B.0.22
158 Modulo Reminder from division of the first operand by the second operand. See B.0.23
161 Min Minimum value of two operands. See B.0.24
162 Max Maximum value of two operands. See B.0.25
203 CalcBlake2b256 Calculate Blake2b hash from input bytes. See B.0.26
204 CalcSha256 Calculate Sha256 hash from input bytes. See B.0.27
205 CreateProveDlog ErgoTree operation to create a new SigmaProp value representing public key of discrete

logarithm signature protocol. See B.0.28
206 CreateProveDHTuple ErgoTree operation to create a new SigmaProp value representing public key of Diffie

Hellman signature protocol. Common input: (g,h,u,v) See B.0.29
209 BoolToSigmaProp See B.0.30
212 DeserializeContext See B.0.31
213 DeserializeRegister See B.0.32
218 Apply Apply the function to the arguments. See B.0.33
227 GetVar Get context variable with given varId and type. See B.0.34
234 SigmaAnd Returns sigma proposition which is proven when all the elements in collection are proven.

See B.0.35
235 SigmaOr Returns sigma proposition which is proven when any of the elements in collection is

proven. See B.0.36
236 BinOr Logical OR of two operands See B.0.37
237 BinAnd Logical AND of two operands See B.0.38
238 DecodePoint Convert Coll[Byte] to GroupElement using GroupElementSerializer See B.0.39
239 LogicalNot Logical NOT operation. Returns true if input is false and false if input is true.

See B.0.40
240 Negation Negates numeric value x by returning -x. See B.0.41
244 BinXor Logical XOR of two operands See B.0.42
255 XorOf Similar to allOf, but performing logical XOR operation between all conditions instead

of && See B.0.43

38

B.0.1 substConstants method (Code 116)

Description Transforms serialized bytes of ErgoTree with segregated constants by replacing
constants at given positions with new values. This operation allow to use seri-
alized scripts as pre-defined templates. The typical usage is ”check that output
box have proposition equal to given script bytes, where minerPk (constants(0))
is replaced with currentMinerPk”. Each constant in original scriptBytes have
SType serialized before actual data (see ConstantSerializer). During substitu-
tion each value from newValues is checked to be an instance of the corresponding
type. This means, the constants during substitution cannot change their types.
Returns original scriptBytes array where only specified constants are replaced
and all other bytes remain exactly the same.

Signature def substConstants[T](scriptBytes: Coll[Byte], positions: Coll[Int],
newValues: Coll[T]): Coll[Byte]

Parameters
scriptBytes serialized ErgoTree with ConstantSegregationFlag set to 1.
positions 0-based indexes in ErgoTree.constants
newValues values to be put into the corresponding positions

Serialized as SubstConstants

B.0.2 longToByteArray method (Code 122)

Description Converts Long value to big-endian bytes representation.

Signature def longToByteArray(input: Long): Coll[Byte]

Parameters input value to convert

Serialized as LongToByteArray

B.0.3 byteArrayToBigInt method (Code 123)

Description Convert big-endian bytes representation (Coll[Byte]) to BigInt value.

Signature def byteArrayToBigInt(input: Coll[Byte]): BigInt

Parameters input collection of bytes in big-endian format

Serialized as ByteArrayToBigInt

B.0.4 byteArrayToLong method (Code 124)

Description Convert big-endian bytes representation (Coll[Byte]) to Long value.

Signature def byteArrayToLong(input: Coll[Byte]): Long

Parameters input collection of bytes in big-endian format

Serialized as ByteArrayToLong

B.0.5 downcast method (Code 125)

Description Cast this numeric value to a smaller type (e.g. Long to Int). Throws exception
if overflow.

Signature def downcast[T, R](input: T): R

Parameters input value to cast

Serialized as Downcast

39

B.0.6 upcast method (Code 126)

Description Cast this numeric value to a bigger type (e.g. Int to Long)

Signature def upcast[T, R](input: T): R

Parameters input value to cast

Serialized as Upcast

B.0.7 selectField method (Code 140)

Description Select tuple field by its 1-based index. E.g. input._1 is transformed to
SelectField(input, 1)

Signature def selectField[T, R](input: T, fieldIndex: Byte): R

Parameters
input tuple of items
fieldIndex index of an item to select

Serialized as SelectField

B.0.8 < method (Code 143)

Description Returns true is the left operand is less then the right operand, false otherwise.

Signature def <[T](left: T, right: T): Boolean

Parameters
left left operand
right right operand

Serialized as LT

B.0.9 <= method (Code 144)

Description Returns true is the left operand is less then or equal to the right operand,
false otherwise.

Signature def <=[T](left: T, right: T): Boolean

Parameters
left left operand
right right operand

Serialized as LE

B.0.10 > method (Code 145)

Description Returns true is the left operand is greater then the right operand, false oth-
erwise.

Signature def >[T](left: T, right: T): Boolean

Parameters
left left operand
right right operand

Serialized as GT

40

B.0.11 >= method (Code 146)

Description Returns true is the left operand is greater then or equal to the right operand,
false otherwise.

Signature def >=[T](left: T, right: T): Boolean

Parameters
left left operand
right right operand

Serialized as GE

B.0.12 == method (Code 147)

Description Compare equality of left and right arguments

Signature def ==[T](left: T, right: T): Boolean

Parameters
left left operand
right right operand

Serialized as EQ

B.0.13 != method (Code 148)

Description Compare inequality of left and right arguments

Signature def !=[T](left: T, right: T): Boolean

Parameters
left left operand
right right operand

Serialized as NEQ

B.0.14 if method (Code 149)

Description Compute condition, if true then compute trueBranch else compute falseBranch

Signature def if[T](condition: Boolean, trueBranch: T, falseBranch: T): T

Parameters
condition condition expression
trueBranch expression to execute when condition == true

falseBranch expression to execute when condition == false

Serialized as If

B.0.15 allOf method (Code 150)

Description Returns true if all the elements in collection are true.

Signature def allOf(conditions: Coll[Boolean]): Boolean

Parameters conditions a collection of conditions

Serialized as AND

B.0.16 anyOf method (Code 151)

Description Returns true if any the elements in collection are true.

Signature def anyOf(conditions: Coll[Boolean]): Boolean

Parameters conditions a collection of conditions

Serialized as OR

41

B.0.17 atLeast method (Code 152)

Description Logical threshold. AtLeast has two inputs: integer bound and children same
as in AND/OR. The result is true if at least bound children are proven.

Signature def atLeast(bound: Int, children: Coll[SigmaProp]): SigmaProp

Parameters
bound required minimum of proven children
children proposition to be proven/validated

Serialized as AtLeast

B.0.18 - method (Code 153)

Description Returns a result of subtracting second numeric operand from the first.

Signature def -[T](left: T, right: T): T

Parameters
left left operand
right right operand

Serialized as Minus

B.0.19 + method (Code 154)

Description Returns a sum of two numeric operands

Signature def +[T](left: T, right: T): T

Parameters
left left operand
right right operand

Serialized as Plus

B.0.20 binary_| method (Code 155)

Description Byte-wise XOR of two collections of bytes. Example: xs | ys.

Signature def binary_|(left: Coll[Byte], right: Coll[Byte]): Coll[Byte]

Parameters
left left operand
right right operand

Serialized as Xor

B.0.21 * method (Code 156)

Description Returns a multiplication of two numeric operands

Signature def *[T](left: T, right: T): T

Parameters
left left operand
right right operand

Serialized as Multiply

42

B.0.22 / method (Code 157)

Description Integer division of the first operand by the second operand.

Signature def /[T](left: T, right: T): T

Parameters
left left operand
right right operand

Serialized as Division

B.0.23 % method (Code 158)

Description Reminder from division of the first operand by the second operand.

Signature def %[T](left: T, right: T): T

Parameters
left left operand
right right operand

Serialized as Modulo

B.0.24 min method (Code 161)

Description Minimum value of two operands.

Signature def min[T](left: T, right: T): T

Parameters
left left operand
right right operand

Serialized as Min

B.0.25 max method (Code 162)

Description Maximum value of two operands.

Signature def max[T](left: T, right: T): T

Parameters
left left operand
right right operand

Serialized as Max

B.0.26 blake2b256 method (Code 203)

Description Calculate Blake2b hash from input bytes.

Signature def blake2b256(input: Coll[Byte]): Coll[Byte]

Parameters input collection of bytes

Serialized as CalcBlake2b256

B.0.27 sha256 method (Code 204)

Description Calculate Sha256 hash from input bytes.

Signature def sha256(input: Coll[Byte]): Coll[Byte]

Parameters input collection of bytes

Serialized as CalcSha256

43

B.0.28 proveDlog method (Code 205)

Description ErgoTree operation to create a new SigmaProp value representing public key of
discrete logarithm signature protocol.

Signature def proveDlog(value: GroupElement): SigmaProp

Parameters value element of elliptic curve group

Serialized as CreateProveDlog

B.0.29 proveDHTuple method (Code 206)

Description ErgoTree operation to create a new SigmaProp value representing public key of
Diffie Hellman signature protocol. Common input: (g,h,u,v)

Signature def proveDHTuple(g: GroupElement, h: GroupElement, u: GroupElement, v: GroupElement):
SigmaProp

Parameters

g

h

u

v

Serialized as CreateProveDHTuple

B.0.30 sigmaProp method (Code 209)

Description Embedding of Boolean values to SigmaProp values. As an example,
this operation allows boolean experessions to be used as arguments of
atLeast(..., sigmaProp(boolExpr), ...) operation. During execution re-
sults to either TrueProp or FalseProp values of SigmaProp type.

Signature def sigmaProp(condition: Boolean): SigmaProp

Parameters condition boolean value to embed in SigmaProp value

Serialized as BoolToSigmaProp

B.0.31 executeFromVar method (Code 212)

Description Extracts context variable as Coll[Byte], deserializes it to script and then exe-
cutes this script in the current context. The original Coll[Byte] of the script is
available as getVar[Coll[Byte]](id). Type parameter V result type of the de-
serialized script. Throws an exception if the actual script type doesn’t conform
to T. Returns a result of the script execution in the current context

Signature def executeFromVar[T](id: Byte): T

Parameters id identifier of the context variable

Serialized as DeserializeContext

44

B.0.32 executeFromSelfReg method (Code 213)

Description Extracts SELF register as Coll[Byte], deserializes it to script and then exe-
cutes this script in the current context. The original Coll[Byte] of the script
is available as SELF.getReg[Coll[Byte]](id). Type parameter T result type
of the deserialized script. Throws an exception if the actual script type doesn’t
conform to T. Returns a result of the script execution in the current context

Signature def executeFromSelfReg[T](id: Byte, default: Option[T]): T

Parameters
id identifier of the register
default optional default value, if register is not available

Serialized as DeserializeRegister

B.0.33 apply method (Code 218)

Description Apply the function to the arguments.

Signature def apply[T, R](func: (T) => R, args: T): R

Parameters
func function which is applied
args list of arguments

Serialized as Apply

B.0.34 getVar method (Code 227)

Description Get context variable with given varId and type.

Signature def getVar[T](varId: Byte): Option[T]

Parameters varId Byte identifier of context variable

Serialized as GetVar

B.0.35 allZK method (Code 234)

Description Returns sigma proposition which is proven when all the elements in collection
are proven.

Signature def allZK(propositions: Coll[SigmaProp]): SigmaProp

Parameters propositions a collection of propositions

Serialized as SigmaAnd

B.0.36 anyZK method (Code 235)

Description Returns sigma proposition which is proven when any of the elements in collec-
tion is proven.

Signature def anyZK(propositions: Coll[SigmaProp]): SigmaProp

Parameters propositions a collection of propositions

Serialized as SigmaOr

45

B.0.37 || method (Code 236)

Description Logical OR of two operands

Signature def ||(left: Boolean, right: Boolean): Boolean

Parameters
left left operand
right right operand

Serialized as BinOr

B.0.38 && method (Code 237)

Description Logical AND of two operands

Signature def &&(left: Boolean, right: Boolean): Boolean

Parameters
left left operand
right right operand

Serialized as BinAnd

B.0.39 decodePoint method (Code 238)

Description Convert Coll[Byte] to GroupElement using GroupElementSerializer

Signature def decodePoint(input: Coll[Byte]): GroupElement

Parameters input serialized bytes of some GroupElement value

Serialized as DecodePoint

B.0.40 unary_! method (Code 239)

Description Logical NOT operation. Returns true if input is false and false if input is
true.

Signature def unary_!(input: Boolean): Boolean

Parameters input input Boolean value

Serialized as LogicalNot

B.0.41 unary_- method (Code 240)

Description Negates numeric value x by returning -x.

Signature def unary_-[T](input: T): T

Parameters input value of numeric type

Serialized as Negation

B.0.42 ^ method (Code 244)

Description Logical XOR of two operands

Signature def ^(left: Boolean, right: Boolean): Boolean

Parameters
left left operand
right right operand

Serialized as BinXor

46

B.0.43 xorOf method (Code 255)

Description Similar to allOf, but performing logical XOR operation between all conditions
instead of &&

Signature def xorOf(conditions: Coll[Boolean]): Boolean

Parameters conditions a collection of conditions

Serialized as XorOf

47

C Serialization format of ErgoTree nodes

All operations have the same serialization format, in which OpCode byte is serialized first and then
the content of the operation is serialized as described in the following subsections.

Note, these subsections are autogenerated from instrumented ValueSerializers of the reference
implementation.

C.0.1 ConcreteCollection operation (OpCode 131)

Slot Format #bytes Description

numItems VLQ(UShort) [1, *] number of item in a collection of expressions

elementType Type [1, *] type of each expression in the collection

for i = 1 to numItems

itemi Expr [1, *] expression in i-th position

end for

C.0.2 ConcreteCollectionBooleanConstant operation (OpCode 133)

Slot Format #bytes Description

numBits VLQ(UShort) [1, *] number of items in a collection of Boolean values

bits Bits [1, 1024] Boolean values encoded as as bits (right most byte is zero-
padded on the right)

C.0.3 Tuple operation (OpCode 134)

Slot Format #bytes Description

numItems UByte 1 number of items in the tuple

for i = 1 to numItems

itemi Expr [1, *] tuple’s item in i-th position

end for

C.0.4 SelectField operation (OpCode 140)

Select tuple field by its 1-based index. E.g. input._1 is transformed to SelectField(input, 1)

See selectField
Slot Format #bytes Description

input Expr [1, *] tuple of items

fieldIndex Byte 1 index of an item to select

C.0.5 LT operation (OpCode 143)

Returns true is the left operand is less then the right operand, false otherwise. See <

48

Slot Format #bytes Description

match (left, right)
otherwise

left Expr [1, *] left operand

right Expr [1, *] right operand

end match

C.0.6 LE operation (OpCode 144)

Returns true is the left operand is less then or equal to the right operand, false otherwise. See <=

Slot Format #bytes Description

match (left, right)
otherwise

left Expr [1, *] left operand

right Expr [1, *] right operand

end match

C.0.7 GT operation (OpCode 145)

Returns true is the left operand is greater then the right operand, false otherwise. See >

Slot Format #bytes Description

match (left, right)
otherwise

left Expr [1, *] left operand

right Expr [1, *] right operand

end match

C.0.8 GE operation (OpCode 146)

Returns true is the left operand is greater then or equal to the right operand, false otherwise.
See >=
Slot Format #bytes Description

match (left, right)
otherwise

left Expr [1, *] left operand

right Expr [1, *] right operand

end match

C.0.9 EQ operation (OpCode 147)

Compare equality of left and right arguments See ==

49

Slot Format #bytes Description

match (left, right)
with (Constant(l, Boolean), Constant(r,Boolean))

opCode Byte 1 always contains OpCode 133

(l, r) Bits 1 two higher bits in a byte

otherwise

left Expr [1, *] left operand

right Expr [1, *] right operand

end match

C.0.10 NEQ operation (OpCode 148)

Compare inequality of left and right arguments See !=

Slot Format #bytes Description

match (left, right)
with (Constant(l, Boolean), Constant(r,Boolean))

opCode Byte 1 always contains OpCode 133

(l, r) Bits 1 two higher bits in a byte

otherwise

left Expr [1, *] left operand

right Expr [1, *] right operand

end match

C.0.11 If operation (OpCode 149)

Compute condition, if true then compute trueBranch else compute falseBranch See if

Slot Format #bytes Description

condition Expr [1, *] condition expression

trueBranch Expr [1, *] expression to execute when condition == true

falseBranch Expr [1, *] expression to execute when condition == false

C.0.12 AND operation (OpCode 150)

Returns true if all the elements in collection are true. See allOf
Slot Format #bytes Description

conditions Expr [1, *] a collection of conditions

C.0.13 OR operation (OpCode 151)

Returns true if any the elements in collection are true. See anyOf

Slot Format #bytes Description

conditions Expr [1, *] a collection of conditions

C.0.14 AtLeast operation (OpCode 152)

Logical threshold. AtLeast has two inputs: integer bound and children same as in AND/OR. The
result is true if at least bound children are proven. See atLeast

50

Slot Format #bytes Description

bound Expr [1, *] required minimum of proven children

children Expr [1, *] proposition to be proven/validated

C.0.15 Minus operation (OpCode 153)

Returns a result of subtracting second numeric operand from the first. See -

Slot Format #bytes Description

left Expr [1, *] left operand

right Expr [1, *] right operand

C.0.16 Plus operation (OpCode 154)

Returns a sum of two numeric operands See +

Slot Format #bytes Description

left Expr [1, *] left operand

right Expr [1, *] right operand

C.0.17 Xor operation (OpCode 155)

Byte-wise XOR of two collections of bytes. Example: xs | ys. See SigmaDslBuilder.xor

Slot Format #bytes Description

left Expr [1, *] left operand

right Expr [1, *] right operand

C.0.18 Multiply operation (OpCode 156)

Returns a multiplication of two numeric operands See *

Slot Format #bytes Description

left Expr [1, *] left operand

right Expr [1, *] right operand

C.0.19 Division operation (OpCode 157)

Integer division of the first operand by the second operand. See /

Slot Format #bytes Description

left Expr [1, *] left operand

right Expr [1, *] right operand

C.0.20 Modulo operation (OpCode 158)

Reminder from division of the first operand by the second operand. See %

Slot Format #bytes Description

left Expr [1, *] left operand

right Expr [1, *] right operand

51

C.0.21 Exponentiate operation (OpCode 159)

Exponentiate this GroupElement to the given number. Returns this to the power of k See GroupElement.exp
Slot Format #bytes Description

this Expr [1, *] this instance

k Expr [1, *] The power

C.0.22 MultiplyGroup operation (OpCode 160)

Group operation. See GroupElement.multiply

Slot Format #bytes Description

this Expr [1, *] this instance

other Expr [1, *] other element of the group

C.0.23 Min operation (OpCode 161)

Minimum value of two operands. See min

Slot Format #bytes Description

left Expr [1, *] left operand

right Expr [1, *] right operand

C.0.24 Max operation (OpCode 162)

Maximum value of two operands. See max

Slot Format #bytes Description

left Expr [1, *] left operand

right Expr [1, *] right operand

C.0.25 MapCollection operation (OpCode 173)

Builds a new collection by applying a function to all elements of this collection. Returns a new
collection of type Coll[B] resulting from applying the given function f to each element of this
collection and collecting the results. See SCollection.map

Slot Format #bytes Description

this Expr [1, *] this instance

f Expr [1, *] the function to apply to each element

C.0.26 Exists operation (OpCode 174)

Tests whether a predicate holds for at least one element of this collection. Returns true if
the given predicate p is satisfied by at least one element of this collection, otherwise false

See SCollection.exists
Slot Format #bytes Description

this Expr [1, *] this instance

p Expr [1, *] the predicate used to test elements

52

C.0.27 ForAll operation (OpCode 175)

Tests whether a predicate holds for all elements of this collection. Returns true if this collec-
tion is empty or the given predicate p holds for all elements of this collection, otherwise false.
See SCollection.forall
Slot Format #bytes Description

this Expr [1, *] this instance

p Expr [1, *] the predicate used to test elements

C.0.28 Fold operation (OpCode 176)

Applies a binary operator to a start value and all elements of this collection, going left to right.
See SCollection.fold
Slot Format #bytes Description

this Expr [1, *] this instance

zero Expr [1, *] a starting value

op Expr [1, *] the binary operator

C.0.29 SizeOf operation (OpCode 177)

The size of the collection in elements. See SCollection.size
Slot Format #bytes Description

this Expr [1, *] this instance

C.0.30 ByIndex operation (OpCode 178)

Return the element of collection if index is in range 0 .. size-1 See SCollection.getOrElse

Slot Format #bytes Description

this Expr [1, *] this instance

index Expr [1, *] index of the element of this collection

optional default

tag Byte 1 0 - no value; 1 - has value

when tag == 1

default Expr [1, *] value to return when index is out of range

end optional

C.0.31 Append operation (OpCode 179)

Puts the elements of other collection after the elements of this collection (concatenation of 2 col-
lections) See SCollection.append

Slot Format #bytes Description

this Expr [1, *] this instance

other Expr [1, *] the collection to append at the end of this

C.0.32 Slice operation (OpCode 180)

Selects an interval of elements. The returned collection is made up of all elements x which satisfy
the invariant: from <= indexOf(x) < until See SCollection.slice

53

Slot Format #bytes Description

this Expr [1, *] this instance

from Expr [1, *] the lowest index to include from this collection

until Expr [1, *] the lowest index to EXCLUDE from this collection

C.0.33 ExtractAmount operation (OpCode 193)

Monetary value in NanoERGs stored in this box. See Box.value

Slot Format #bytes Description

this Expr [1, *] this instance

C.0.34 ExtractScriptBytes operation (OpCode 194)

Serialized bytes of the guarding script which should be evaluated to true in order to open this box
(spend it in a transaction). See Box.propositionBytes

Slot Format #bytes Description

this Expr [1, *] this instance

C.0.35 ExtractBytes operation (OpCode 195)

Serialized bytes of this box’s content, including proposition bytes. See Box.bytes

Slot Format #bytes Description

this Expr [1, *] this instance

C.0.36 ExtractBytesWithNoRef operation (OpCode 196)

Serialized bytes of this box’s content, excluding transactionId and index of output. See Box.bytesWithoutRef
Slot Format #bytes Description

this Expr [1, *] this instance

C.0.37 ExtractId operation (OpCode 197)

Blake2b256 hash of this box’s content, basically equals to blake2b256(bytes) See Box.id

Slot Format #bytes Description

this Expr [1, *] this instance

C.0.38 ExtractRegisterAs operation (OpCode 198)

Extracts register by id and type. Type param T expected type of the register. Returns Some(value)
if the register is defined and has given type and None otherwise See Box.getReg

Slot Format #bytes Description

this Expr [1, *] this instance

regId Byte 1 zero-based identifier of the register.

type Type [1, *] expected type of the value in register

54

C.0.39 ExtractCreationInfo operation (OpCode 199)

If tx is a transaction which generated this box, then creationInfo._1 is a height of the tx’s block.
The creationInfo._2 is a serialized bytes of the transaction identifier followed by the serialized
bytes of the box index in the transaction outputs. See Box.creationInfo

Slot Format #bytes Description

this Expr [1, *] this instance

C.0.40 CalcBlake2b256 operation (OpCode 203)

Calculate Blake2b hash from input bytes. See blake2b256

Slot Format #bytes Description

input Expr [1, *] collection of bytes

C.0.41 CalcSha256 operation (OpCode 204)

Calculate Sha256 hash from input bytes. See sha256

Slot Format #bytes Description

input Expr [1, *] collection of bytes

C.0.42 CreateProveDlog operation (OpCode 205)

ErgoTree operation to create a new SigmaProp value representing public key of discrete logarithm
signature protocol. See proveDlog

Slot Format #bytes Description

value Expr [1, *] element of elliptic curve group

C.0.43 CreateProveDHTuple operation (OpCode 206)

ErgoTree operation to create a new SigmaProp value representing public key of Diffie Hellman
signature protocol. Common input: (g,h,u,v) See proveDHTuple

Slot Format #bytes Description

g Expr [1, *]

h Expr [1, *]

u Expr [1, *]

v Expr [1, *]

C.0.44 SigmaPropBytes operation (OpCode 208)

Serialized bytes of this sigma proposition taken as ErgoTree. See SigmaProp.propBytes

Slot Format #bytes Description

this Expr [1, *] this instance

C.0.45 BoolToSigmaProp operation (OpCode 209)

Embedding of Boolean values to SigmaProp values. As an example, this operation allows boolean
experessions to be used as arguments of atLeast(..., sigmaProp(boolExpr), ...) operation.
During execution results to either TrueProp or FalseProp values of SigmaProp type. See sigmaProp

55

Slot Format #bytes Description

condition Expr [1, *] boolean value to embed in SigmaProp value

C.0.46 DeserializeContext operation (OpCode 212)

Extracts context variable as Coll[Byte], deserializes it to script and then executes this script in the
current context. The original Coll[Byte] of the script is available as getVar[Coll[Byte]](id).
Type parameter V result type of the deserialized script. Throws an exception if the actual script type
doesn’t conform to T. Returns a result of the script execution in the current context See executeFromVar
Slot Format #bytes Description

type Type [1, *] expected type of the deserialized script

id Byte 1 identifier of the context variable

C.0.47 DeserializeRegister operation (OpCode 213)

Extracts SELF register as Coll[Byte], deserializes it to script and then executes this script in the
current context. The original Coll[Byte] of the script is available as SELF.getReg[Coll[Byte]](id).
Type parameter T result type of the deserialized script. Throws an exception if the actual script type
doesn’t conform to T. Returns a result of the script execution in the current context See executeFromSelfReg
Slot Format #bytes Description

id Byte 1 identifier of the register

type Type [1, *] expected type of the deserialized script

optional default

tag Byte 1 0 - no value; 1 - has value

when tag == 1

default Expr [1, *] optional default value, if register is not available

end optional

C.0.48 ValDef operation (OpCode 214)

Slot Format #bytes Description

C.0.49 FunDef operation (OpCode 215)

Slot Format #bytes Description

C.0.50 BlockValue operation (OpCode 216)

Slot Format #bytes Description

numItems VLQ(UInt) [1, *] number of block items

for i = 1 to numItems

itemi ValDef [1, *] block’s definition in i-th position

end for

result Expr [1, *] result expression of the block

56

C.0.51 FuncValue operation (OpCode 217)

Slot Format #bytes Description

numArgs VLQ(UInt) [1, *] number of function arguments

for i = 1 to numArgs

idi VLQ(UInt) [1, *] identifier of the i-th argument

typei Type [1, *] type of the i-th argument

end for

body Expr [1, *] function body, which is parameterized by arguments

C.0.52 Apply operation (OpCode 218)

Apply the function to the arguments. See apply

Slot Format #bytes Description

func Expr [1, *] function which is applied

#items VLQ(UInt) [1, *] number of items in the collection

for i = 1 to #items

argsi Expr [1, *] i-th item in the list of arguments

end for

C.0.53 PropertyCall operation (OpCode 219)

Slot Format #bytes Description

typeCode Byte 1 type of the method (see Table 8)

methodCode Byte 1 a code of the property

obj Expr [1, *] receiver object of this property call

C.0.54 MethodCall operation (OpCode 220)

Slot Format #bytes Description

typeCode Byte 1 type of the method (see Table 8)

methodCode Byte 1 a code of the method

obj Expr [1, *] receiver object of this method call

#items VLQ(UInt) [1, *] number of items in the collection

for i = 1 to #items

argsi Expr [1, *] i-th item in the arguments of the method call

end for

C.0.55 GetVar operation (OpCode 227)

Get context variable with given varId and type. See Context.getVar

Slot Format #bytes Description

varId Byte 1 Byte identifier of context variable

type Type [1, *] expected type of context variable

57

C.0.56 OptionGet operation (OpCode 228)

Returns the option’s value. The option must be nonempty. Throws exception if the option is empty.
See SOption.get

Slot Format #bytes Description

this Expr [1, *] this instance

C.0.57 OptionGetOrElse operation (OpCode 229)

Returns the option’s value if the option is nonempty, otherwise returns default. See SOption.getOrElse
Slot Format #bytes Description

this Expr [1, *] this instance

default Expr [1, *] the default value

C.0.58 OptionIsDefined operation (OpCode 230)

Returns true if the option is an instance of Some, false otherwise. See SOption.isDefined

Slot Format #bytes Description

this Expr [1, *] this instance

C.0.59 SigmaAnd operation (OpCode 234)

Returns sigma proposition which is proven when all the elements in collection are proven. See allZK
Slot Format #bytes Description

#items VLQ(UInt) [1, *] number of items in the collection

for i = 1 to #items

propositionsi Expr [1, *] i-th item in the a collection of propositions

end for

C.0.60 SigmaOr operation (OpCode 235)

Returns sigma proposition which is proven when any of the elements in collection is proven.
See anyZK

Slot Format #bytes Description

#items VLQ(UInt) [1, *] number of items in the collection

for i = 1 to #items

propositionsi Expr [1, *] i-th item in the a collection of propositions

end for

C.0.61 BinOr operation (OpCode 236)

Logical OR of two operands See ||

58

Slot Format #bytes Description

match (left, right)
with (Constant(l, Boolean), Constant(r,Boolean))

opCode Byte 1 always contains OpCode 133

(l, r) Bits 1 two higher bits in a byte

otherwise

left Expr [1, *] left operand

right Expr [1, *] right operand

end match

C.0.62 BinAnd operation (OpCode 237)

Logical AND of two operands See &&

Slot Format #bytes Description

match (left, right)
otherwise

left Expr [1, *] left operand

right Expr [1, *] right operand

end match

C.0.63 DecodePoint operation (OpCode 238)

Convert Coll[Byte] to GroupElement using GroupElementSerializer See decodePoint

Slot Format #bytes Description

input Expr [1, *] serialized bytes of some GroupElement value

C.0.64 LogicalNot operation (OpCode 239)

Logical NOT operation. Returns true if input is false and false if input is true. See unary_!

Slot Format #bytes Description

input Expr [1, *] input Boolean value

C.0.65 Negation operation (OpCode 240)

Negates numeric value x by returning -x. See unary_-

Slot Format #bytes Description

input Expr [1, *] value of numeric type

C.0.66 BinXor operation (OpCode 244)

Logical XOR of two operands See ^

Slot Format #bytes Description

match (left, right)
otherwise

left Expr [1, *] left operand

right Expr [1, *] right operand

end match

59

C.0.67 XorOf operation (OpCode 255)

Similar to allOf, but performing logical XOR operation between all conditions instead of &&

See xorOf
Slot Format #bytes Description

conditions Expr [1, *] a collection of conditions

C.0.68 SubstConstants operation (OpCode 116)

Transforms serialized bytes of ErgoTree with segregated constants by replacing constants at given
positions with new values. This operation allow to use serialized scripts as pre-defined templates.
The typical usage is ”check that output box have proposition equal to given script bytes, where
minerPk (constants(0)) is replaced with currentMinerPk”. Each constant in original scriptBytes
have SType serialized before actual data (see ConstantSerializer). During substitution each value
from newValues is checked to be an instance of the corresponding type. This means, the constants
during substitution cannot change their types.

Returns original scriptBytes array where only specified constants are replaced and all other
bytes remain exactly the same. See substConstants

Slot Format #bytes Description

scriptBytes Expr [1, *] serialized ErgoTree with ConstantSegregationFlag set to 1.

positions Expr [1, *] 0-based indexes in ErgoTree.constants

newV alues Expr [1, *] values to be put into the corresponding positions

C.0.69 LongToByteArray operation (OpCode 122)

Converts Long value to big-endian bytes representation. See longToByteArray

Slot Format #bytes Description

input Expr [1, *] value to convert

C.0.70 ByteArrayToBigInt operation (OpCode 123)

Convert big-endian bytes representation (Coll[Byte]) to BigInt value. See byteArrayToBigInt

Slot Format #bytes Description

input Expr [1, *] collection of bytes in big-endian format

C.0.71 ByteArrayToLong operation (OpCode 124)

Convert big-endian bytes representation (Coll[Byte]) to Long value. See byteArrayToLong

Slot Format #bytes Description

input Expr [1, *] collection of bytes in big-endian format

C.0.72 Downcast operation (OpCode 125)

Cast this numeric value to a smaller type (e.g. Long to Int). Throws exception if overflow.
See downcast
Slot Format #bytes Description

input Expr [1, *] value to cast

type Type [1, *] resulting type of the cast operation

60

C.0.73 Upcast operation (OpCode 126)

Cast this numeric value to a bigger type (e.g. Int to Long) See upcast

Slot Format #bytes Description

input Expr [1, *] value to cast

type Type [1, *] resulting type of the cast operation

61

D Motivations

D.1 Type Serialization format rationale

ErgoTree types terms are serialized using special encoding designed for compact storage yet fast
deserialization. In this section we describe the motivation.

Some operations of ErgoTree have type parameters, for which concrete types should be specified
(since ErgoTree is monomorphic IR). When the operation (such as ExtractRegisterAs) is serialized
those type parameters should also be serialized as part of the operation. The following encoding
is designed to minimize a number of bytes required to represent type in the serialization format of
ErgoTree. Since most of the scripts will use simple types so we want them the take a single byte
of the storage.

In the intermediate representation of ErgoTree each type is represented by a tree of nodes where
leaves are primitive types and other nodes are type constructors. Simple (but sub-optimal) way to
serialize a type would be to give each primitive type and each type constructor a unique type code.
Then, to serialize a node, we whould need to emit its code and then perform recursive descent to
serialize all children.

However, to save storage space, we use special encoding schema to save bytes for the types that
are used more often.

We assume the most frequently used types are:

� primitive types (Boolean, Byte, Short, Int, Long, BigInt, GroupElement, SigmaProp, Box,
AvlTree)

� Collections of primitive types (Coll[Byte] etc)

� Options of primitive types (Option[Int] etc.)

� Nested arrays of primitive types (Coll[Coll[Int]] etc.)

� Functions of primitive types (Box => Boolean etc.)

� First biased pair of types ((_, Int) when we know the first component is a primitive type).

� Second biased pair of types ((Int, _) when we know the second component is a primitive
type)

� Symmetric pair of types ((Int, Int) when we know both types are the same)

All the types above should be represented in an optimized way preferably by a single byte (see
examples in Figure 7). For other types, we do recursive descent down the type tree as it is defined
in section 5.1.4.

D.2 Constant Segregation rationale

D.2.1 Massive script validation

Consider a transaction tx which have INPUTS collection of boxes to spend. Every input box can
have a script protecting it (propostionBytes property). This script should be executed in a
context of the current transaction. The simplest transaction have 1 input box. Thus if we want to

62

have a sustained block validation of 1000 transactions per second we need to be able to validate
1000 scripts per second at minimum. Additionally, the block validation time should be as small
as possible so that a miner can start solving the PoW puzzle as soon as possible to increase the
probability of the successful mining.

For every script (of an input box) the following is done in order to validate it (and should be
executed as fast as possible):

1. A Context object is created with SELF = box

2. ErgoTree is traversed to build a cost graph - the graph for the cost estimation

3. Cost estimation is computed by evaluating the cost graph with the current context

4. If the cost within the limit, the ErgoTree is evaluated using the context to obtain sigma
proposition (see SigmaProp)

5. Sigma protocol verification procedure is executed

D.2.2 The Potential Script Processing Optimization

Before an ErgoScript contract can be stored in a blockchain it should be first compiled from its
source code into ErgoTree and then serialized into byte array. Because the ErgoTree is purely
functional graph-based IR, the compiler may perform various optimizations for reducing a size of
the tree. This will have an effect of normalization/unification, in which different original scripts
may be compiled into the identical ErgoTrees and as a result the identical serialized bytes.

In many cases two boxes will have the same ErgoTree up to a substitution of constants. For
example all pay-to-public-key scripts have the same ErgoTree template in which only public key
(constant of GroupElement type) is replaced.

Because of normalization, and also because of script template reusability, the number different
scripts templates is much less than the number of actual ErgoTrees in the UTXO boxes. For
example we may have 1000s of different script templates in a blockchain with millions of UTXO
boxes.

The average reusability ratio is 1000 in this case. And even those 1000 different scripts may
have different usage frequency. Having big reusability ratio we can optimize script evaluation by
performing the step 2 from section D.2.1 only once per unique script.

The compiled cost graph can be cached in Map[Array[Byte], Context => Int]. Every Er-
goTree template extracted from an input box can be used as the key in this map to obtain the
graph which is ready to execute.

However, there is an obstacle to the optimization by caching, i.e. the constants embedded in
contracts. In many cases it is natural to embed constants in the ErgoTree body with the most
notable scenario is when public keys are embedded. As the result two functionally identical scripts
are serialized to the different byte arrays because they have the different embedded constants.

D.2.3 Templatized ErgoTree

A solution to the problem with embedded constants is simple, we don’t need to embed constants.
Each constant in the body of ErgoTree can be replaced with an indexed placeholder node (see

63

ConstantPlaceholder). Each placeholder have an index of the constant in the constants collec-
tion of ErgoTree.

The transformation is part of compilation and is performed ahead of time. Each ErgoTree have
an array of all the constants extracted from its body. Each placeholder refers to the constant by
the constant’s index in the array. The index of the placeholder can be assigned by breadth-first
topological order of the graph traversal during compilation of ErgoScript into ErgoTree. Whatever
method is used, a placeholder should always refer to an existing constant.

Thus the format of serialized ErgoTree with is shown in Figure 11 which contains:

1. The bytes of collection with segregated constants

2. The bytes of script expression with placeholders

The collection of constants contains the serialized constant data (using ConstantSerializer)
one after another. The script expression is a serialized Value with placeholders.

Using such script format we can use the script expression bytes as a key in the cache. The
observation is that after the constants are segregated, what remains is the template. Thus, instead
of applying steps 1-2 from section D.2.1 to constant-full scripts we can apply them to constant-less
templates. Before applying the steps 3 - 5 we need to bind placeholders with actual values taken
from the constants collection and then evaluate both cost graph and ErgoTree.

64

E Compressed encoding of integer values

E.1 VLQ encoding

public final void putULong(long value) {

while (true) {

if ((value & ~0x7FL) == 0) {

buffer[position++] = (byte) value;

return;

} else {

buffer[position++] = (byte) (((int) value & 0x7F) | 0x80);

value >>>= 7;

}

}

}

E.2 ZigZag encoding

Encode a ZigZag-encoded 64-bit value. ZigZag encodes signed integers into values that can be
efficiently encoded with varint. (Otherwise, negative values must be sign-extended to 64 bits to be
varint encoded, thus always taking 10 bytes in the buffer.

Parameter n is a signed 64-bit integer. This Java method returns an unsigned 64-bit integer,
stored in a signed int because Java has no explicit unsigned support.

public static long encodeZigZag64(final long n) {

// Note: the right-shift must be arithmetic

return (n << 1) ^ (n >> 63);

}

65

	Introduction
	ErgoTree As A Language
	Typing
	Evaluation
	Semantics

	Serialization
	Type Serialization
	Data Serialization
	Constant Serialization
	Expression Serialization
	ErgoTree serialization

	Compliant Implementation
	Predefined types
	Byte type
	Short type
	Int type
	Long type
	BigInt type
	GroupElement type
	SigmaProp type
	Box type
	[basicstyle=]AvlTree type
	Header type
	PreHeader type
	Context type
	Global type
	Coll type
	Option type

	Predefined global functions
	Serialization format of ErgoTree nodes
	Motivations
	Type Serialization format rationale
	Constant Segregation rationale

	Compressed encoding of integer values
	VLQ encoding
	ZigZag encoding

