
Advanced ErgoScript Tutorial

Ergo Developers

April 25, 2019

Abstract

Ergo is a smart contract platform based on Bitcoin’s UTXO model and Ethereum-like func-
tionality that it provides via a language called ErgoScript. The syntax of ErgoScript is a subset
of Scala’s. In this article, we give a high-level overview of ErgoScript using examples.

We use ErgoScript to create smart contracts for several protocols such as an XOR game,
a rock-paper-scissors game, reversible addresses that have anti-theft features, and ErgoMix, a
privacy enhancing protocol, which can be considered a non-interactive variant of CoinJoin.

1 Introduction

A key feature of ErgoScript is the use of Sigma-Protocols (written Σ-protocols)[1] interleaved with
predicates on the transaction and the blockchain state. ErgoScript currently supports two such-
Protocols defined on a group G of prime order q, written here in multiplicative form. The first,
denoted as proveDlog(u), is a proof of knowledge of Discrete Logarithm of some arbitrary group
element u with respect to a fixed generator g, where the spender proves knowledge of x such that
u = gx. This is derived from Schnorr signatures [2]. The second, denoted as proveDHTuple, is a
proof of knowledge of Diffie-Hellman Tuple and is explained in Section 3.3.

The main structure in ErgoScript is a box, which is roughly like a UTXO of Bitcoin. A trans-
action spends (destroys) some boxes by using them as inputs and creates new boxes as outputs.
ErgoScript is used to write the spending condition protecting funds stored in a box. The spender
of a box must provide a ‘proof’ of satisfying that condition.

The following sections present smart contracts using ErgoScript. More details of ErgoScript are
available in the white paper [3] and the code for the below examples is available on GitHub [4].

2 Basic Examples: Enhanced Spending Contracts

The examples below use P2SH address and highlight some limitation of Bitcoin.

2.1 Short-lived Unconfirmed Transactions: Paying for Coffee

Alice is paying for coffee using cryptocurrency. She makes a payment but it is taking a long time
for the transaction to confirm. She decides to pay using cash and leave. However, she is worried
that her original payment will eventually confirm and then she will either lose it or have to ask for
a refund. In Bitcoin, she can try to double spend the transaction, which is not always guaranteed,
even if using replace-by-fee. ErgoScript has a better solution using timed-payments so that if the

1

transaction is not confirmed before a certain height, it is no longer valid. Timed-payments require
Alice’s funds be stored in a timed address, which is the P2SH of the following script:

alice && HEIGHT <= getVar[Int](1).get

Here alice is a named constant representing her public key. Any funds deposited to this address
can only be spent if the spending transaction satisfies following:

1. Context variable with id 1 of the box being spent must contain an integer, say i.

2. The height at mining should be less than or equal to i.

Observe that if the transaction is not mined before height i then the transaction becomes invalid.
When paying at a coffee shop, for example, Alice can set i close to the height h at the time of
broadcast, for instance, i = h + 10. Alice can still send non-timed payments by making i very
large. Since the context variables are part of the message in constructing the zero-knowledge proof,
a miner cannot change it (to make this transaction valid).

2.2 Hot-Wallet Contracts: Reversible Addresses

We create a useful primitives called reversible addresses, designed for storing funds in a hot-wallet.
Any funds sent to a reversible address can only be spent in way that allows payments to be
reversed for a certain time. The idea was proposed for Bitcoin [5] (using the moniker R-addresses)
and requires a hardfork. In ErgoScript, however, this can be done natively.

To motivate this feature, consider managing the hot-wallet of a mining pool or an exchange.
Funds withdrawn by customers originate from this hot-wallet. Being a hot-wallet, its private key
is succeptible to compromise. One day you discover several unauthorized transactions from the
hot-wallet, indicating a breach. You wish there was a way to reverse the transactions and cancel
the withdraws but alas this is not the case. In general there is no way to recover the lost funds
once the transaction is mined, even if the breach was discovered within minutes.

We would like that in the event of such a compromise, we are able to save all funds stored
in this wallet and move them to another address, provided that the breach is discovered within a
specified time (such as 24 hours) of the first unauthorized withdraw.

To achieve this, we require that all coins sent from the hot-wallet (both legitimate and by the
attacker) have a 24 hour cooling-off period, during which the created boxes can only be spent by
a trusted private key that is was selected before the compromise occurred. This trusted key must
be different from the hot-wallet private key and should ideally be in cold storage. After 24 hours,
these boxes become ‘normal’ and can only be spent by the receiver.

This is done by storing the hot-wallet funds in a special type of address denoted as reversible.
Assume that alice is the public key of the hot-wallet and carol is the public key of the trusted
party. Note that the trusted party must be decided at the time of address generation and cannot be
changed later. To use a different trusted party, a new address has to be generated. Let blocksIn24h
be the estimated number of blocks in a 24 hour period. A reversible address is a P2SH address
whose script encodes the following conditions:

1. This input box can only be spent by alice.

2. Any output box created by spending this input box must have in its register R5 a number at
least blocksIn24h more than the current height.

2

3. Any output box created by spending this input box must be protected by a script requring
the following:

(a) Its register R4 must have an arbitrary public key called bob.

(b) Its register R5 must have an arbitrary integer called bobDeadline.

(c) It can only be spent spent by carol if HEIGHT ≤ bobDeadline.

(d) It can only be spent by bob if HEIGHT > bobDeadline.

Thus, all funds sent from such addresses have a temporary lock of blocksIn24h blocks. This
can be replaced by any other desired value but it must be decided at the time of address generation.
Let bob be the public key of a customer who is withdrawing. The sender (alice) must ensure that
register R4 of the created box contains bob. In the normal scenario, bob will be able to spend the
box after roughly blocksIn24h blocks (with the exact number depending on bobDeadline).

If an unauthorized transaction from alice is detected, an “abort procedure” is triggered via
carol: all funds sent from alice and in the locked state are suspect and need to diverted elsewhere.

To create a reversible address, first create a script, withdrawScript, with the following code:

val bob = SELF.R4[SigmaProp].get // public key of customer withdrawing

val bobDeadline = SELF.R5[Int].get // max locking height

(bob && HEIGHT > bobDeadline) || (carol && HEIGHT <= bobDeadline)

Let feeProposition be the script of a box that pays mining fee and maxFee be the maximum
fee allowed in one transaction. The reversible address is the P2SH address of the following script:

val isChange = {(out:Box) => out.propositionBytes == SELF.propositionBytes}

val isWithdraw = {(out:Box) =>

out.R5[Int].get >= HEIGHT + blocksIn24h &&

out.propositionBytes == withdrawScript

}

val isFee = {(out:Box) => out.propositionBytes == feeProposition}

val isValid = {(out:Box) => isChange(out) || isWithdraw(out) || isFee(out)}

val totalFee = OUTPUTS.fold(0L, {

(x:Long, b:Box) => if (isFee(b)) x + b.value else x

}

)

alice && OUTPUTS.forall(isValid) && totalFee <= maxFee

2.3 Cold-Wallet Contracts: Limiting Spending Capacity

Assume an address is protected by 2 private keys, corresponding to the public keys alice and bob.
For security, we want the following conditions to hold:

1. One key can spend at most 1% or 100 Ergs (whichever is higher) in one day.

2. If both keys are spending then there are no restrictions.

3

Let blocksIn24h be the number of blocks in 24 hours. Instead of hardwiring 1% and 100 Ergs,
we will use the named constants percent and minSpend respectively. The cold-wallet address is
the P2SH address of the following script:

val storedStartHeight = SELF.R4[Int].get // block at which the period started

val creationHeight = SELF.creationInfo._1 // creation height

val startHeight = min(creationHeight, storedStartHeight)

val notExpired = HEIGHT - startHeight <= blocksIn24h // expired if 24 hrs passed

val min = SELF.R5[Long].get // min Balance needed in this period

val ours:Long = SELF.value - SELF.value * percent / 100

val keep = if (ours > minSpend) ours else 0L // topup should keep min >= keep

val nStart:Int = if (notExpired) start else HEIGHT

val nMin:Long = if (notExpired) min else keep

val out = OUTPUTS(0)

val valid = INPUTS.size == 1 && out.propositionBytes == SELF.propositionBytes &&

out.value >= nMin && out.R4[Int].get >= nStart && out.R5[Long].get == nMin})

(alice && bob) || ((alice || bob) && min >= keep && (nMin == 0 || valid))

Spending from this address is done in periods of 24 hours or more such that the maximum
spendable is a fixed fraction of the amount at the beginning of the period. We do this by requiring
the spending transaction to have an output with value greater than the minumum (which is stored
in R5) and paying back to the same address. The start of the current period is stored in R4. Both
registers are copied to the new output within the same period and get new values for if the current
period has expired.

3 Two-party Protocols

We focus on two-round, two-party protocols. In the first round, the first party, Alice, initiates the
protocol by creating a box protected by a script encoding the protocol rules. In the second round,
the second party, Bob, completes the protocol by spending Alice’s box usually with one of his own
and creating additional boxes that encode the final state of the protocol.

All the protocols here allow the first round to be offchain in the sense that Alice’s box creation
may be deferred until the time Bob actually participates in the protocol. Alice instead sends her
box-creation transaction to Bob, who will then publish both transactions at a later time.

3.1 The XOR Game

We describe a simple game called “Same or Different” or the XOR game. Alice and Bob both
submit a coin each and select a bit independently. If the bits are same, Alice gets both coins, else
Bob gets both coins. The game consists of 3 steps.

1. Alice commits to a secret bit a as follows. She selects a random bit-string s and computes
her commitment k = H(s‖a) (i.e., hash after concatenating s with a).

4

She creates an unspent box called the half-game output containing her coin and commitment
k. This box is protected by a script called the half-game script given below. Alice waits
for another player to join her game, who will do so by spending her half-game output and
creating another box that satisfies the conditions given in the half-game script.

2. Bob joins Alice’s game by picking a random bit b and spending Alice’s half-game output to
create a new box called the full-game output. This new box holds two coins and contains b
(in the clear) alongwith Bob’s public key in the registers. Note that the full-game output
must satisfy the conditions given by the half-game script. In particular, one of the conditions
requires that the full-game output must be protected by the full-game script (given below).

3. Alice opens k offchain by revealing s, a and wins if a = b. The winner spends the full-game
output using his/her private key and providing s and a as input to the full-game script.

If Alice fails to open k within a specified deadline then Bob automatically wins.

The full-game script encodes the following conditions: The registers R4, R5 and R6 are expected
to store Bob’s bit b, Bob’s public key (stored as a proveDlog proposition) and the deadline for Bob’s
automatic win respectively. The context variables with id 0 and 1 (provided at the time of spending
the full-game box) contain s and a required to open Alice’s commitnent k, which alongwith Alice’s
public key alice is used to compute fullGameScriptHash, the hash of the below script:

val s = getVar[Coll[Byte]](0).get // bit string s

val a = getVar[Byte](1).get // bit a (represented as a byte)

val b = SELF.R4[Byte].get // bit b (represented as a byte)

val bob = SELF.R5[SigmaProp].get // Bob’s public key

val bobDeadline = SELF.R6[Int].get

(bob && HEIGHT > bobDeadline) ||

(blake2b256(s ++ Coll(a)) == k && (alice && a == b || bob && a != b))

The above constants are used to create halfGameScript with the following code:

val out = OUTPUTS(0)

val b = out.R4[Byte].get

val bobDeadline = out.R6[Int].get

val validBobInput = b == 0 || b == 1

validBobInput && blake2b256(out.propositionBytes) == fullGameScriptHash &&

OUTPUTS.size == 1 && bobDeadline >= HEIGHT+30 && out.value >= SELF.value * 2

Alice creates her half-game box protected by halfGameScript, which requires that the transac-
tion spending the half-game box must generate exactly one output box with the following properties:

1. Its value must be at least twice that of the half-game box.

2. Its register R4 must contain a byte that is either 0 or 1. This encodes Bob’s choice b.

3. Its register R6 must contain an integer that is at least 30 more than the height at which the
box is generated. This will correspond to the height at which Bob automatically wins.

4. It must be protected by a script whose hash equals fullGameScriptHash.

5

The game ensure security and fairness as follows. Since Alice’s choice is hidden from Bob when
he creates the full-game output, he does not have any advantage in selecting b. Secondly, Alice is
guaranteed to lose if she commits to a value other than 0 or 1 because she can win only if a = b.
Thus, the rational strategy for Alice is to commit to a correct value. Finally, if Alice refuses to
open her commitment, then Bob is sure to win after the deadline expires.

3.2 Rock-Paper-Scissors Game

Compared to Rock-Paper-Scissors (RPS), the XOR game is simpler (and efficient) because there
is no draw condition and for this reason should be prefered in practice. However, it is useful to
consider the RPS game as an example of more complex protocols.

Let a, b ∈ Z3 be the choices of Alice and Bob, with the understanding that 0, 1 and 2 represent
rock, paper and scissors respectively. If a = b then the game is a draw, otherwise Alice wins if
a− b ∈ {1,−2} else Bob wins. The game is similar to XOR, except that Bob generates two outputs
to handle the draw case (where each player gets one output). Alice’s commitment k = H(a||s) and
public key alice is used in generating fullGameScriptHash, the hash of the following script:

val s = getVar[Coll[Byte]](0).get // Alice’s secret byte string s

val a = getVar[Byte](1).get // Alice’s secret choice a (represented as a byte)

val b = SELF.R4[Byte].get // Bob’s public choice b (represented as a byte)

val bob = SELF.R5[SigmaProp].get

val bobDeadline = SELF.R6[Int].get // after this, it becomes Bob’s coin

val drawPubKey = SELF.R7[SigmaProp].get

val valid_a = (a == 0 || a == 1 || a == 2) && blake2b256(s ++ Coll(a)) == k

(bob && HEIGHT > bobDeadline) || {valid_a &&

if (a == b) drawPubKey else {if ((a - b) == 1 || (a - b) == -2) alice else bob}}

To start the game, Alice creates a box protected by the script given below:

OUTPUTS.forall{(out:Box) =>

val b = out.R4[Byte].get

val bobDeadline = out.R6[Int].get

bobDeadline >= HEIGHT+30 && out.value >= SELF.value &&

(b == 0 || b == 1 || b == 2) &&

blake2b256(out.propositionBytes) == fullGameScriptHash

} && OUTPUTS.size == 2 && OUTPUTS(0).R7[SigmaProp].get == alice

The above code ensures that register R7 of the first output contains Alice’s public key (for
the draw scenario). Bob has to make sure that R7 of the second output contains his public key.
Additionally, he must ensure that R5 of both outputs contains his public key.

3.3 ErgoMix: Non-Interactive CoinJoin

Privacy enhancing techniques in blockchains generally fall into two categories. The first is hiding
the amounts being transferred, such as in Confidential Transactions [6]. The second is obscuring
the input-output relationships such as in ZeroCoin [7] and CoinJoin [8]. Some solutions such as

6

MimbleWimble [9] and Z-Cash [10, 11] combine both approaches. We describe ErgoMix, another
privacy enhancing protocol based on the latter approach. The protocol is motivated from ZeroCoin
and CoinJoin to overcome some of their limitations.

ErgoMix uses a pool of Half-Mix boxes, which are boxes ready for mixing. This is called the
H-pool. To mix an arbitrary box B, any one of the following is done:

1. Pool: Add box B to the H-pool and wait for someone to use it in a mix step.

2. Mix: Pick any box A from the H-pool and a secret bit b. Spend A,B to generate two Fully
Mixed boxes O0, O1 such Ob and O1−b are spendable by A’s and B’s owners respectively.

Privacy comes from the fact that boxes Ob and O1−b are indistinguishable so an outsider cannot
guess b with probability better than 1/2. Thus, the probability of guessing the original box after
n mixes is 1/2n. A box is mixed several times to reach the desired privacy. Figure 1b explains the
protocol.

ErgoMix uses a primitive called a Proof of Diffie-Hellman Tuple, explained below. Let g, h, u, v
be public group elements. The prover proves knowledge of x such that u = gx and v = hx.

1. The prover picks r
R← Zq, computes (t0, t1) = (gr, hr) and sends (t0, t1) to the verifier.

2. The verifier picks c
R← Zq and sends c to prover.

3. The prover sends z = r + cx to the verifier, who accepts if gz = t0 · uc and hz = t1 · vc.

We use the non-interactive variant, where c = H(t0‖t1‖m). We call this proveDHTuple(g, h, u, v).

3.3.1 The Basic Protocol

Without loss of generality, Alice will pool and Bob will mix. Let g be the generator of proveDlog.

1. Pool: To add a coin to the H-pool, Alice picks random x ∈ Zq and creates an output box A
containing u = gx protected by the script given below. She waits for Bob to join, who will
do so by spending A in a transaction satisfying following conditions:

(a) It has two outputs O0, O1 containing pairs (w0, w1), (w1, w0) respectively for w0, w1 ∈ G.

(b) One of (g, u, w0, w1), (g, u, w1, w0) is of the form (g, gx, gy, gxy), a valid Diffie-Hellman
tuple. This is encoded as proveDHTuple(g, u, w0, w1) ∨ proveDHTuple(g, u, w1, w0).

(c) The value of O0, O1 is the same as that of A.

(d) Both O0, O1 should be protected by the script τA ∨ τB given in the Mix step below.

2. Mix: Bob picks secrets (b, y) ∈ Z2 × Zq and spends A with one of his own box to create two
output boxes O0, O1 of equal value such that Ob is spendable by Alice alone and O1−b by Bob
alone. The boxes are indistinguisable in the sense that they have identical scripts operating
on data registers c, d containing different (but related) elements from G as explained below.

(a) Registers (c, d) of Ob and O1−b are set to (gy, uy) and (uy, gy) respectively.

(b) Each box is protected by the proposition τA ∨ τB, where τA and τB are as follows:

τA = “Prove knowledge of x such that u = gx and d = cx via proveDHTuple(g, c, u, d).”

τB = “Prove knowledge of y such that d = gy via proveDlog(d).”

7

After the mix, Alice and Bob can spent their respective boxes using their secrets. Alice can identify
her box as the one with d = cx.

ErgoScript Code: First compute fullMixScriptHash, the hash of the following script:

val u = SELF.R4[GroupElement].get // copied from previous transaction

val c = SELF.R5[GroupElement].get

val d = SELF.R6[GroupElement].get

proveDlog(d) || proveDHTuple(g, c, u, d)

Next create a script, halfMixScript, having the following code:

val u = SELF.R4[GroupElement].get

val u0 = OUTPUT(0).R4[GroupElement].get

val c0 = OUTPUT(0).R5[GroupElement].get // w0

val d0 = OUTPUT(0).R6[GroupElement].get // w1

val u1 = OUTPUT(1).R4[GroupElement].get

val c1 = OUTPUT(1).R5[GroupElement].get // w1

val d1 = OUTPUT(1).R6[GroupElement].get // w0

val bob = u0 == u && u1 == u && c0 == d1 && c1 == d0 &&

(proveDHTuple(g, u, c0, d0) || proveDHTuple(g, u, d0, c0))

val alice = proveDlog(u) // so Alice can spend if no one joins for a long time

val fullMixBox = {(b:Box) => blake2b256(b.propositionBytes) == fullMixScriptHash}

val fullMixTx = OUTPUT(0).value == SELF.value && OUTPUT(1).value == SELF.value &&

fullMixBox(OUTPUT(0)) && fullMixBox(OUTPUT(1))

fullMixTx && (bob || alice)

Alice’s Half-Mix box is protected by halfMixScript given above, which Bob can spend using
the condition bob. In case no one spends her box for a long time, she can do so herself using the
condition alice, as long as she spends it in a mix transaction.

3.3.2 Analysis Of The Protocol

Security: Observe that registers (c, d) of Ob and O1−b contain (gy, gxy) and (gxy, gy) respectively,
implying that Ob’s spending condition reduces to proveDlog(gxy)∨proveDHTuple(g, gy, gx, gxy) and
O1−b’s reduces to proveDlog(gy) ∨ proveDHTuple(g, gxy, gx, gy). Thus, while Alice can spend Ob

using proveDHTuple with her secret x, she cannot satisfy the spending condition of O1−b. Similarly,
Bob can only spend O1−b using proveDlog with his secret y. Bob must generate O0, O1 this way
because he must prove that one of the outputs contains a valid DH tuple.

For privacy, observe that any two identical boxes protected by halfMixScript have spender
indistinguisbility because each one is spent using a Σ-OR-proof that is zero-knowledge [1]. It can
be shown that any algorithm that, given (g, gx), distinguishes (gy, gxy) from (gxy, gy) can be used
to solve the Decision Diffie Hellman (DDH) problem. It follows that our boxes, which are of this
form, are also indistingushable if the DDH problem is hard.

8

(a) CoinJoin (b) ErgoMix

Figure 1: Comparing CoinJoin and ErgoMix

Comparing with CoinJoin: CoinJoin [8] is a privacy enhancing protocol, where multiple parties
provide inputs and create outputs in a single transaction computed interactively such that the
original inputs and outputs are unlinked. The optimal use of CoinJoin is when two inputs of equal
value are joined to generate two outputs of equal value, and the process is repeated, as depicted in
Figure 1a. This requires two parties to interactively sign a transaction offchain and this interactive
nature is the primary drawback of CoinJoin, which ErgoMix aims to overcome. In ErgoMix, this
interaction is replaced by public participation using the blockchain. While this adds one more
transaction, it does not require interaction between the parties. Note that ErgoMix transactions
are detectable, while CoinJoin transactions are indistinguishable from ordinary transactions.

Comparing with ZeroCoin: ZeroCoin is a privacy enhancing protocol that uses a mixing pool.
An ordinary coin is added to the pool as a commitment c to some secrets (r, s), and is later spent
such that the link to c is not publicly visible. The value c must be permanently stored in the
pool, since the spending transaction cannot reveal it. Instead, it reveals the secret s (the serial
number) along with a zero-knowledge proof that s was used in a commitment from the pool. The
serial number is permanently stored to prevent double spending. One consequence of this is that
both the pool (the set of commitments) and the set of spent serial numbers must be maintained in
memory for verifying every transaction. Another consequence is that the sizes of the these two sets
increase monotonously. This is the main drawback of ZeroCoin (also ZCash [10]), which ErgoMix
tries to address. In ErgoMix, once a box is spent, no information about it is kept in memory, and
in particular no data sets of monotonously increasing sizes are maintained.

Offchain Pool: The H-Pool can be kept entirely offchain, so that Alice’s Half-Mix box need not
be present on the blockchain till the time Bob decides to spend it. Alice sends her unbroadcasted
transaction directly to Bob who will broadcast both transactions at some later time.

9

Future enhancements: Compared to CoinJoin, ErgoMix requires an additional box (the Half-
Mix box) as depicted in Figure 1. It will be better to have a variant that eliminates this box. One
way to do this would be to find a way so that the mix step directly outputs two indistinguishable
Half-Mix boxes that can be used either in the mix step or spent externally.

3.3.3 Handling Fee In ErgoMix

Similar to ZeroCoin and the canonical variant of CoinJoin in Figure 1a, each coin in ErgoMix must
be of a fixed value, which is carried over to the next stage. This is fine in theory but implies zero-fee
transactions, which is not possible in practice. Below we discuss some approaches for handling fee.

Assume that fee is paid in mixing tokens, which are tokens1 issued by a 3rd party and that
creation of a mixed output consumes one such token. A mix transaction (which has two such
outputs) consumes exactly two mixing tokens and, to maintain privacy, the balance must be equally
distributed between the two outputs. Below are some strategies to ensure fairness in fee payment.

1. Perfect Fairness: Alice’s Half-Mix box contains i mixing tokens and she requires each
output box to contain i− 1 mixing tokens. Thus, Alice can mix her coin i times.

This optimal fee strategy, however, has two drawbacks. Firstly, it has weakened privacy
because it restricts the coins that can be mixed. Secondly, it impacts usability because there
may not be boxes with the desired number of tokens. The approximate fairness strategy,
discussed next, has better privacy and usability at the cost of reduced fairness.

2. Approximate Fairness: Alice relaxes her condition by requiring that Bob contribute at
least one token in the mix. However, she also requires Bob to have initially started with
exactly 1000 tokens in his first mix. Thus, if Bob is contributing, say, 1 token in the current
mix, then Alice wants to ensure that he actually got there ‘the hard way’, by starting out
with 1000 tokens and losing them in sequential mixes. This can be done as follows:

Firstly, the token issuer must restrict the entry of tokens by issuing them only in batches of
1000 in a box protected by the script below, which requires that the tokens can be transferred
(as a whole) only if the transaction is either a mix transaction or creates a Half-Mix box:

val halfBox = {(b:Box) => blake2b256(b.propositionBytes) == halfMixScriptHash}

val sameTokenHalfBox = {(b:Box) => halfBox(b) && b.tokens(0) == SELF.tokens(0)}

carol && (halfBox(INPUTS(0) || sameTokenHalfBox(OUTPUTS(0))) // carol is buyer

The value halfMixScriptHash is a hash of halfMixScript, which has the following addi-
tional code: out.R7[Coll[Byte]].get == blake2b256(SELF.propositionBytes), thereby
ensuring that R7 of each output contains its hash. The code of fullMixScript is modified:

val halfMixScriptHash = SELF.R7[Coll[Byte]].get

val halfBox = {(b:Box) => blake2b256(b.propositionBytes) == halfMixScriptHash}

val sameTokenHalfBox = {(b:Box) => halfBox(b) && b.tokens(0) == SELF.tokens(0)}

val noToken = {(token:(Coll[Byte], Long)) => token._1 != SELF.tokens(0)._1}

1Every transaction may generate any quantity of at most one token, whose ID is the box-ID of the first input.
For other token-IDs, the sum of quantities in outputs must be less than or equal to the sum of quantities in inputs.

10

val noTokenBox = {(b:Box) => b.tokens.forall(noToken)}

val noTokenTx = OUTPUTS.forall(noTokenBox)

(halfBox(INPUTS(0)) || sameTokenHalfBox(OUTPUTS(0)) || noTokenTx) && ...

3. First Spender Pays Fee: Another enhancement, primarily in perfect fairness, is to benefit
the party that is willing to wait longer. We then require that the fee for the mix transaction
be paid by the first party that spends an output. We can identify the first spender as follows.

A mix transaction must generate exactly 4 quantities of a token (with some id x) distributed
equally among 4 outputs. Two of these are the standard mix outputs O0, O1 with the addi-
tional spending condition that one output must contain some non-zero quantity of token x.
The other two boxes, O2, O3, have the following identical spending conditions:

(a) The sum of quantities of token x in the inputs and outputs is 3 and 2 respectively.

(b) One output contains 2 quantities of token x protected by the same script as this box.

Then it the second spender if and only if there is an input with two quantities of token x.
The mix step will create an additional box with two tokens spendable by the second spender.

4 Conclusion

This article described smart contracts written in ErgoScript. The examples build upon concepts
from the ErgoScript white-paper [3]. More advanced contracts will be discussed in another tutorial.

References

[1] Ivan Damg̊ard. On Σ-Protocols, 2010. http://www.cs.au.dk/~ivan/Sigma.pdf.

[2] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, 1991.

[3] Ergoscript, a cryptocurrency scripting language supporting noninteractive zero-knowledge
proofs. https://docs.ergoplatform.com/ErgoScript.pdf, 03 2019.

[4] Scorex Foundation. Sigmastate interpretter. https://github.com/ScorexFoundation/

sigmastate-interpreter, 2017.

[5] Adding anti-theft feature to bitcoin using a new address type. https://bitcointalk.org/

index.php?topic=4440801.0, 06 2018.

[6] Gregory Maxwell. Confidential transactions. https://people.xiph.org/~greg/

confidential_values.txt, 2015.

[7] Ian Miers, Christina Garman, Matthew Green, and A.D. Rubin. Zerocoin: Anonymous dis-
tributed e-cash from bitcoin. pages 397–411, 05 2013.

[8] Coinjoin: Bitcoin privacy for the real world. https://bitcointalk.org/?topic=279249, 08
2013.

11

http://www.cs.au.dk/~ivan/Sigma.pdf
https://docs.ergoplatform.com/ErgoScript.pdf
https://github.com/ScorexFoundation/sigmastate-interpreter
https://github.com/ScorexFoundation/sigmastate-interpreter
https://bitcointalk.org/index.php?topic=4440801.0
https://bitcointalk.org/index.php?topic=4440801.0
https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt
https://bitcointalk.org/?topic=279249

[9] T.E. Jedusor. Mimblewimble. https://download.wpsoftware.net/bitcoin/wizardry/

mimblewimble.txt, 2016.

[10] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran
Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In
Proceedings of the 2014 IEEE Symposium on Security and Privacy, SP ’14, pages 459–474,
Washington, DC, USA, 2014. IEEE Computer Society.

[11] Zcash. https://z.cash, 2016.

12

https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt
https://z.cash

	Introduction
	Basic Examples: Enhanced Spending Contracts
	Short-lived Unconfirmed Transactions: Paying for Coffee
	Hot-Wallet Contracts: Reversible Addresses
	Cold-Wallet Contracts: Limiting Spending Capacity

	Two-party Protocols
	The XOR Game
	Rock-Paper-Scissors Game
	ErgoMix: Non-Interactive CoinJoin
	The Basic Protocol
	Analysis Of The Protocol
	Handling Fee In ErgoMix

	Conclusion

